Document Type : Research paper

Authors

1 Department of Tissue and Cell Culture, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Department of Horticulture, College of Abouraihan, University of Tehran, Tehran, Iran

3 Department of Horticulture, Faculty of Agriculture, University of Jiroft, Jiroft, Iran

Abstract

Doubled haploid method via parthenogenesis induction still remained prominent in Cucurbitaceae breeding due to drastic reduction in time and cost of newly released lines. In this study, different doses of Gamma ray (25, 50, 75, 100, and 200 Gy) were used to irradiate pollen grains for induction of parthenogenetic haploid embryos in oilseed pumpkin (Cucurbita pepo var. ‘Styriaca’). Parthenogenetic embryos at different developmental stages were rescued in vitro and 348 plants were obtained, of which 134 were recognized as haploid by ploidy analysis. The highest rate of haploid plants was obtained from globular (25.3%) and torpedo (23.8% plants) embryos followed by arrow-tip (13.4%), torpedo (10.5%), stick (10.5%), heart (9%), and cotyledonary (7.5%), respectively. All doses, except 200 Gy, were effective for induction of embryos and haploid plants; in a way that the highest number of haploids was obtained by 100 Gy. Our results indicated that parthenogenetic haploid embryos could be efficiently induced in C. pepo if proper Gamma ray dose and developmental stage of embryos are selected.

Keywords

1. Abak K, Sari N, Paksoy M, Yılmaz H, Aktas H, Tunalı C. 1996. Genotype response to haploid embryo induction with pollination by irradiated pollen in melon, obtaining of dihaploid lines, determination of haploid plants by different
techniques. Turkish Journal of Agriculture and Forestry 20: 425-430.
2. Abak K, Çömlekçioglu N, Büyükalaca S, Sarı N. 1998. Use of stomatal characteristics to estimate ploidy level of haploid and dihaploid pepper plants. Xth EUCARPIA Meeting Capsicum and Eggplant, Avignon – France, pp 179-182.
3. Ahmadi B, Ahmadi M, Teixeira da Silva J.A. 2018. Microspore embryogenesis in Brassica: calcium signaling, epigenetic modification, and programmed cell death. Planta 248(6): 1339–1350.
4. Berber M, Yildiz M, Abak K. 2010. Effects of irradiation doses on haploid embryo and plant production in naked and shelled seed pumpkins, XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 929, pp 381-384.
5. Caglar G, Abak K. 1999. Obtention of in vitro haploid plants from in situ induced haploid embryos in cucumber (Cucumis sativus L.). Turkish Journal of Agriculture and Forestry 23: 283-290.
6. Chahal G, Gosal S. 2002. Principles and procedures of plant breeding: biotechnological and conventional approaches. Alpha Science Int'l Ltd, United Kingdom.
7. Cuny F. 1993. Processus d'induction d'embryons haploïdes par du pollen irradié chez le melon (Cucumis melo L.) Réponses du pollen à l'irradiation gamma. These de Docteur, Universite´ d’Avignon et des Pays de Vaucluse, Avignon.
8. Dore C. 1986. Evaluation du niveau de ploidie des plantes d’une population de choux de Bruxelles (Brassica oleracea L. ssp. gemmifera) d’origine pollinique. Agronomie 6: 797-801.
9. Ebrahimzadeh H, Lotfi M, Azizinia S, Ghanavati F. 2013. Production of haploids in Cucurbita pepo L. through parthenogenesis induced by gamma-irradiated pollen. Crop Biotechnology 3: 99-108.
10. Ebrahimzadeh H, Shariatpanahi M.E, Ahmadi B, Soltanloo H, Lotfi M, Zarifi E. 2018. Efficient parthenogenesis induction and in vitro haploid plant regeneration in cucumber (Cucumis sativus L.) using putrescine, spermidine, and cycocel. Journal of Plant Growth Regulation 37(4): 1127-1134.
11. Gałązka J, Niemirowicz-Szczytt K. 2013. Review of research on haploid production in cucumber
Hamed Ebrahimzadeh et al. Int. J. Hort. Sci. Technol. 2021 8(3): 285-294
293
and other cucurbits. Folia Horticulturae 25: 67-78.
12. Galbrith D, Harkins K, Maddox J, Ayres N, Sharma D, Firoozabady E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051.
13. Germanà M.A. 2006. Doubled haploid production in fruit crops. Plant Cell, Tissue and Organ Culture 86: 131-146.
14. Germanà M.A. 2011. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports 30: 839-857.
15. Godbole M, Murthy H.N. 2012. Parthenogenetic haploid plants using gamma irradiated pollen in snapmelon (Cucumis melo var. momordica). Plant Cell, Tissue and Organ Culture 109: 167-170.
16. Guimarães R.L, Stotz H.U. 2004. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiology 136: 3703-3711.
17. Gürsöz N, Abak K, Pitrat M, Rode J, Dumas de Vaulx R. 1991. Obtention of haploid plants induced by irradiated pollen in watermelon (Citrullus lanatus). Cucurbit Genetics Cooperative 11: 109-110.
18. Jaskani M.J, Khan I.A, Khan M. 2005. Fruit set, seed development and embryo germination in interploid crosses of citrus. Scientia Horticulturae 107: 51-57.
19. Košmrlj K, Murovec J, Bohanec B. 2013. Haploid induction in hull-less seed pumpkin through parthenogenesis induced by X-ray-irradiated pollen. Journal of the American Society for Horticultural Science 138: 310-316.
20. Kurtar E, Sarı N, Abak K. 2002. Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica 127: 335-344.
21. Kurtar E.S, Balkaya A, Ozbakir M, Ofluoglu T. 2009. Induction of haploid embryo and plant regeneration via irradiated pollen technique in pumpkin (Cucurbita moschata Duchesne ex. Poir). African Journal of Biotechnology 8: 5944-5951.
22. Kurtar E.S, Balkaya A. 2010. Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell, Tissue and Organ Culture 102: 267-277.
23. Lotfi M, Alan A, Henning M, Jahn M, Earle E. 2003. Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Reports 21: 1121-1128.
24. Niemirowicz-Szczytt K, Dumas de Vaulx R. 1989. Preliminary data on haploid cucumber (Cucumis sativus L.) induction. Cucurbit Genetics Cooperative. 12: 24-25.
25. Ondrej V, Navratilova B, Lebeda A. 2001. In vitro cultivation of Cucumis sativus ovules after fertilization, II International Symposium on Cucurbits 588, pp 339-343.
26. Pandey K.K. 1978. Gametic gene transfer in Nicotiana by means of irradiated pollen. Genetica 49: 53-69.
27. Raquin C, Cornu A, Farcy E, Maizonnier D, Pelletier G, Vedel F. 1982. Nucleus substitution between Petunia species using gamma ray-induced androgenesis. Theoretical and Applied Genetics 78: 337-341.
28. Rêgo M, Rêgo E, Bruckner C, Finger F, Otoni W. 2011. In vitro induction of autotetraploids from diploid yellow passion fruit mediated by colchicine and oryzalin. Plant Cell, Tissue and Organ Culture. 107: 451-459.
29. Sari N, Abak K, Pitrat M, Dumas de Vaulx R. 1992. Induction of parthenogenetic haploid embryos and plant obtention in melon (Cucumis melo L. var. inodorus Naud ve C. melo L. var. reticulatus Naud). Turkish Journal of Agriculture and Forestry. 16: 302-314.
30. Sauton A, Vaulx R.D. 1987. Obtention de plantes haploïdes chez le melon (Cucumis melo L.) par gynogenèse induite par du pollen irradié. Agronomie 7: 141-148.
31. Savaskan C, Toker M. 1991. The effects of various doses gamma irradiation on the seed germination and root tips chromosomes of rye (Secales cereals L.). Turkish Journal of Botany 15: 349-359.
32. Shariatpanahi M.E, Ahmadi B. 2016. Isolated microspore culture and its applications in plant breeding and genetics. In: Anis M, Ahmad N (eds), Plant Tissue Culture: Propagation, Conservation and Crop Improvement. Springer Science+Business Media, Singapore, pp 487-507.
33. Song Y, Yang Y, Zhang Y, Duan L, Zhou C, Ni Y, Liao X, Li Q, Hu X. 2013. Effect of acetylation on antioxidant and cytoprotective activity of
Hamed Ebrahimzadeh et al. Int. J. Hort. Sci. Technol. 2021 8(3): 285-294
294
polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva). Carbohydr Polym 98: 686-691.
34. Taner K, Yanmaz R, Kunter B. 2000. The effects of irradiation dose and harvest period on haploid plant formation via irradiated pollen in snake cucumber (Cucumis melo var. flexuosus Naud.). IIIrd National Vegetable Culture Symposium, 11-13 September 2000, Isparta- Turkey. pp 177-181.
35. Thiruvengadam M, Jeyakumar J.J, Kamaraj M, Lee Y.J, Chung I.M. 2013. Plant regeneration
through somatic embryogenesis from suspension cultures of gherkin (Cucumis anguria L.). Australian Journal of Crop Science 7(7): 969-977.
36. Todorova M, Ivanov P, Nenova N, Encheva J. 2004. effect of female genotype on the efficiency ofγ-induced parthenogenesis on sunflower (Helianthus annuus L.). Helia 27: 67-74.
37. Yadav M, Jain S, Tomar R, Prasad G.B.K.S, Yadav H. 2010. Medicinal and biological potential of pumpkin: an updated review. Nutrition Research Reviews 23: 184-190.