Document Type : Review paper


1 Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054 Ufa, Russia

2 Bashkir Research Institute of Agriculture – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str., 19, 450059 Ufa, Russia

3 Bashkir Research Institute of Agriculture – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str., 19, 450059 Ufa, Russia Bashkir State University, Z. Validi Str., 32, 450076 Ufa, Russia

4 Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054 Ufa, Russia Bashkir Research Institute of Agriculture – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str., 19, 450059 Ufa, Russia

5 Bashkir State University, Z. Validi Str., 32, 450076 Ufa, Russia

6 Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya, 71, 450054 Ufa, Russia Bashkir State University, Z. Validi Str., 32, 450076 Ufa, Russia

7 Photosynthesis Laboratory, Aburaihan Campus, University of Tehran, PC 3391653775 Pakdasht, Tehran, Iran


Beneficial microorganisms which help plants to grow better especially under stress conditions are known as plant growth-promoting bacteria (PGPB). These biotic agents, especially Bacillus subtilis have well-known role in plant growth promotion and induction of tolerance to stress in plants. They are deemed to act as bio-active and eco-friendly agents to facilitate plant growth under stressful conditions and even to control postharvest decays. Microbial antagonists, including B. subtilis, effectively control postharvest diseases of different fruits, vegetables and flowers, which is manifested in prolonged storage period and shelf/vase life, while preserving qualities and reducing weight losses. In this review paper we highlight the potential benefit of PGPBs especially B. subtilis, as important biotic useful agents to help horticultural plant perform better under stressful conditions and to delay senescence and control the postharvest deterioration through activation of different defense mechanisms. We further elaborate the underlying mechanisms that PGPB used to help plants to cope with stressful conditions. Nevertheless, the mechanisms of PGPB especially B. subtilis action requires further detailed investigations to fully utilize their potentials in horticulture industry.


Abdel-Rahman S.S, Abdel-Kader A.A, Khalil S.E. 2011. Response of three sweet basil cultivars to inoculation with Bacillus subtilis and arbuscular mycorrhizal fungi under salt stress conditions. Nature and Science 9, 93-111.
2. Ahmadinik A, Rahimikhoob A, Aliniaeifard S. 2020. Water use efficiency in novel integrated system of greenhouse and saltwater evaporative pond. Desalination 496, 114698.
3. Aliniaeifard S, Tabatabaei S. 2010. Use of Chlorophyll meter for nitrogen management and recommendation of optimum nitrogen concentration in soilless culture of lily. Floriculture and Ornamental Biotechnology 4, 63-67.
4. Aliniaeifard S, Rezaei-Nejad A, Seifi-Kalhor M, Shahlaei A, Aliniaeifard A. 2010. Comparison of soil and perlite (with nutrient solution supply) growing media for cultivation of lemon verbena (Lippia citriodora var. ‘Verbena’). Medicinal and Aromatic Plant Science and Biotechnology 4, 30-33.
5. Allagulova C.R, Gimalov F.R, Shakirova F.M, Vachitov V.A. 2003. The plant dehydrins: structure and putative functions. Biochemistry (Moscow) 68, 945-951.
6. Aliniaeifard S, van Meeteren U. 2013. Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells? Journal of Experimental Botany 64, 3551-3566.
7. Aliniaeifard S. 2014. Signal transduction pathways in guard cells after prolonged exposure to low vapour pressure deficits. PhD thesis, Wageningen University.
8. Aliniaeifard S, Malcolm Matamoros P, van Meeteren U. 2014. Stomatal malfunctioning under low Vapor Pressure Deficit (VPD) conditions: Induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? Physiologia Plantarum 152, 688-699.
9. Aliniaeifard S, Hajilou J, Tabatabaei S.J. 2016a. Photosynthetic and growth responses of olive to proline and salicylic acid under salinity
condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44, 579-585.
10. Aliniaeifard S, Hajilou J, Tabatabaei S.J, Sifi-Kalhor M. 2016b. Effects of ascorbic acid and reduced glutathione on the alleviation of salinity stress in olive plants. International Journal of Fruit Science 16, 395-409.
11. Aliniaeifard S, van Meeteren U. 2016. Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity. Scientia Horticulturae 205, 84-89.
12. Aliniaeifard S, van Meeteren U. 2018. Natural genetic variation in stomatal response can help to increase acclimation of plants to dried environments, 1190 ed. Acta Horticulturae 71-76.
13. Aliniaeifard S, van Meeteren U. 2018. Greenhouse vapour pressure deficit and lighting conditions during growth can influence postharvest quality through the functioning of stomata. Acta Horticulturae 1227, 677-684.
14. Aliniaeifard S, Shomali A, Seifikalhor M, Lastochkina O. 2020. Calcium signaling in plants under drought, In: Hasanuzzaman M, Tanveer M. (Eds.), Salt and drought stress tolerance in plants: Signaling networks and adaptive mechanisms. Springer International Publishing, Cham 259-298.
15. Alfonzo A, Conigliaro G, Torta L, Burruano S, Moschetti G. 2009. Antagonism of Bacillus subtilis strain AG1 against vine wood fungal pathogens. Phytopathologia Mediterranea 48, 155-158.
16. Arrebola E, Jacobs R, Korsten L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal Applied Microbiology 108(2), 386-395.
17. Arroyave-Toroa J.J, Mosquera S, Villegas-Escobar V. 2017. Biocontrol activity of Bacillus subtilis EA-CB0015 cells and lipopeptides against postharvest fungal pathogens. Biological control 114, 195-200.
18. Arzanesh M.H, Alikhani H.A, Khavazi K, Rahimain H.A, Miransari M. 2011. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology 27, 197-205.
19. Asaka O, Shoda M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with
Oksana Lastochkina et al. Int. J. Hort. Sci. Technol. 2021 8(2): 103-122
Bacillus subtilis RB14. Applied and Environmental Microbiology 62, 4081-4085.
20. Acharya B.R, Assmann S.M. 2009. Hormone interactions in stomatal function. Plant Molecular Biology 69, 451-462.
21. Ahmad Z, Wu J, Chen L, Dong W. 2017. Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific Reports 7(1), 1777.
22. Aouadhi C, Rouissi Z, Kmiha S, Mejri S, Maaroufi A. 2016. Effect of sporulation conditions on the resistance of Bacillus Sporothermodurans spores to nisin and heat. Food Microbiology 54, 6-10.
23. Baez-Rogelio A, Morales-Garcıa Y.E, Quintero-Hernandez V, Munoz-Rojas J. 2016. Next generation of microbial inoculants for agriculture and bioremediation. Microbial Biotechnology 10(1), 19-21.
24. Barnawal D, Bharti N, Pandey S.S, Pandey A, Chanotiya S.C, Kalra A. 2017. Plant growth promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiologia Plantarum 161(4), 502-514.
25. Berg G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84(1), 11-18.
26. Berg G, Alavi M, Schmidt C.S, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B. 2013. Biocontrol andm osmoprotection for plants under saline conditions. In: Molecular microbial ecology of the rhizosphere, (Ed.: Frans J. de Bruijn). Wiley-Blackwell, USA.
27. Beneduzi A, Ambrosini A, Passaglia L. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetic and Molecular Biology 35(4), 1044-1051.
28. Bochow H, El-Sayed S.F, Junge H, Stavropoulou A, Schmiedeknecht G. 2001. Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 108(1), 21-30.
29. Buchholz F, Kostic T, Sessitsch A, Mitter B. 2018. The potential of plant microbiota in reducing postharvest food loss. Microbial Biotechnology 11(6), 971-5.
30. Cakmakci R, Donmez M.F, Erdogan U. 2007. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of Agriculture and Forestry 31, 189-199.
31. Cao Q, Den Camp R.O, Kalhor, M.S, Bisseling T, Geurts R. 2012. Efficiency of Agrobacterium rhizogenes–mediated root transformation of Parasponia and Trema is temperature dependent. Plant Growth Regulation 68, 459-465.
32. Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M. 2015. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial Biotechnology 8(2), 281-295.
33. Chen Y, Fanourakis D, Tsaniklidis G, Aliniaeifard S, Yang Q, Li T. 2021. Low UVA intensity during cultivation improves the lettuce shelf-life, an effect that is not sustained at higher intensity. Postharvest Biology and Technology 172, 111376.
34. Compant S, Clément C, Sessitsch A. 2010. Plant growth promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry 42(5), 669-678.
35. Coutinho B.G, Licastro D, Mendonca-Previato L. 2015. Plant-Influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Molecular Plant Microbe Interactions 28(1), 10-21.
36. Creus C.M, Sueldo R.J, Barassi C.A. 2004. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany 82(2).
37. Cho S.J, Lee S.K, Cha B.J, Kim Y.H, Shin K.S. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiology Letters 223(1), 47-51.
38. Chebotar V.K, Makarova N.M, Shaposhnikov A.I, Kravchenko L.V. 2009. Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of bioprepations. Applied Biochemistry and Microbiology 45, 419-423.
39. Chebotar V.K, Malfanova N.V, Shcherbakov A.V. 2015. Endophytic bacteria in microbial preparations that improve plant development
Oksana Lastochkina et al. Int. J. Hort. Sci. Technol. 2021 8(2): 103-122
(review). Appl Biochemistry and Microbiology 51(3), 271-277.
40. Chen X.H, Scholz R, Borriss M, Junge H, Mögel G, Kunz S, Borris R. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. Journal of Biotechnology 140, 38-44.
41. Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A. 2015. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought: oasis palm endophytes promote drought resistance. Environmental Microbiology Reports 7, 668-678.
42. Chernin L, Chet I. 2002. Microbial enzymes in the biocontrol of plant pathogens and pests. In: Burns R.G, Dick R.P. (Eds.), Enzymes in the Environment: Activity, Ecology, and Applications. Marcel Dekker Inc., New York, USA.
43. Chung S, Kong H, Buyer J.S, Lakshman D.K, Lydon J, Kim S.D, Roberts D.P. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbiology and Biotechnology 80, 115-123.
44. Díaz-Zorita M, Fernandez-Canigia M.V. 2009. Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European Journal of Soil Biology 45, 3-11.
45. Dimkpa C.O, Merten D, Svatos A, Büchel G, Kothe E. 2009. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. Journal of Applied Microbiology 107, 1687-1696.
46. Droby S. 2006. Improving quality and safety of fresh fruit and vegetables after harvest by the use of biocontrol agents and natural materials. Acta Horticulturae 709, 45-51.
47. Droby S, Wisniewski M, Macarisin D, Wilson C. 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biology and Technology 52(2), 137-145.
48. Droby S, Wisniewski M, Teixidó N, Spadaro D, Jijakli M.H. 2016. The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology 122, 22-29.
49. Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V,
Tikhonovich I, Kamilova F, Validov S.Z, Lugtenberg B. 2011. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility of Soils 47, 197-205.
50. Egamberdieva D, Wirth S.J, Shurigin V.V, Hashem A, Abd Allah E.F. 2017. Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology 8, 1887.
51. El-Afry M.M, El-Nady M.F, Belal E.B, Metwaly M.M. 2012. Physiological responses of drought stressed wheat plants (Triticum aestivum L.) treating with some bacterial endophytes. Journal of Plant Production, Mansoura University 3(7), 2069-2089.
52. Fan H, Ru J, Zhang Y, Wang Q, Li Y. 2017. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiological Research 199, 89-97.
53. FAO. 2015. Food losses and waste. URL
54. FAO. 2019. The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Rome.
55. Furlan F, Saatkamp K, Volpiano C.G, de Assis Franco F, Santos M.F, Vendruscolo E.C, Guimarães V.F, da Costa A.C. 2017. Plant growth-promoting bacteria effect in withstanding drought in wheat cultivars. Scientia agrarian 18, 104-113.
56. Garipova S, Shayahmetova A, Lastochkina O, Fedorova K, Pusenkova L. 2020. Effect of inoculation of bean plants by endophytic bacteria Bacillus subtilis on the growth of seedlings in model experiments and productivity under the conditions of Southern PreUral. Agrochemical Herald Journal 6, 48-53.
57. García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, Vicente A, Pérez-García A. 2013. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate – and salicylic acid-dependent defense responses. Microbial Biotechnology 6(3), 264-274.
58. Gao H, Xu X, Dai Y, He H. 2016. Isolation, identification and characterization of Bacillus subtilis CF-3, a bacterium from fermented bean curd for controlling postharvest diseases of
Oksana Lastochkina et al. Int. J. Hort. Sci. Technol. 2021 8(2): 103-122
peach fruit. Food Science and Technology Research 22(3), 377-385.
59. Gagné-Bourque F, Bertrand A, Claessens A, Aliferis K.A, Jabaji1 S. 2016. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Frontiers in Plant Science 7, 584.
60. Gotor-Vila A, Usall J, Torres R, Solsona C, Teixidó N. 2017. Biocontrol products based on Bacillus amyloliquefaciens CPA-8 using fluid-bed spray-drying process to control postharvest brown rot in stone fruit. LWT - Food Science and Technology 82, 274-282.
61. Govender V, Korsten L, Sivakumar D. 2005. Semi-commercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biology and Technology 38(1), 57-65.
62. Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z. 2013. Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 36, 8-14.
63. Gowtham H, Singh B, Murali M, Shilpa N, Prasad M, Aiyaz M, Amruthesh K, Niranjana S. 2020. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiological Research 234, 126422.
64. Gupta V, Bochow H, Dolej S, Dolej S, Fischer I. 2000. Plant growth-promoting Bacillus subtilis strain as potential inducer of systemic resistance in tomato against Fusarium wilt. Journal of Plant Diseases and Protection 145-154.
65. Gupta S, Pandey S. 2020. Enhanced salinity tolerance in the common bean (Phaseolus vulgaris) plants using twin ACC deaminase producing rhizobacterial inoculation. Rhizosphere 16, 100241.
66. Hassanzadeh K, Aliniaeifard S, Farzinia M.M, Ahmadi M. 2017. Effect of phenological stages on essential oil content, composition and rosmarinic acid in Rosmarinus officinalis L. International Journal of Horticultural Science and Technology 4, 251-258.
67. Huang D, Wu W, Abrams S.R, Cutler A.J. 2008. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. Journal of Experimental Botany 59(11), 2991-3007.
68. Jamalizadeh M, Etebarian H, Aminian H, Alizadeh A. 2009. Evaluation of Bacillus spp. as potential biocontrol agent for postharvest gray mold control on golden delicious apple in Iran. Journal of Plant Protection Research 49(4), 405-410.
69. Ji Z.L, Peng S, Zhu W, Dong J.P, Zhu F. 2020. Induced resistance in nectarine fruit by Bacillus licheniformis W10 for the control of brown rot caused by Monilinia fructicola. Food Microbiology 103558.
70. Jiang Y.M, Chen F, Li Y.B, Liu S.X. 2001. A preliminary study on the biological control of postharvest diseases of Litchi fruit. Journal of Fruit Science 14(3), 185-186.
71. Kalhor M, Aliniaeifard S, Seif M, Asayesh E.J, Bernard F, Hassani B, Li T. 2018. Enhanced salt tolerance and photosynthetic performance: Implication of ɤ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. Plant physiology and biochemistry 130, 157-172.
72. Kasim W.A, Osman M.E, Omar M.N, Abd El-Daim IA, Bejai S, Meijer J. 2013. Control of Drought Stress in Wheat Using Plant-Growth-Promoting Bacteria. Journal of Plant Growth Regulation 32, 122-130.
73. Kilani-Feki O, Ben Khedher S, Dammak M, Kamoun A, Jabnoun-Khiareddine H, Daami-Remadi M, Touns S. 2016. Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biological control 95, 73-82.
74. Kim H.M, Lee K.J, Chae J.C. 2015. Postharvest biological control of Colletotrichum acutatum on apple by Bacillus subtilis HM1 and the structural identification of antagonists. Journal of Microbiology and Biotechnology 25(11), 1954-1959.
75. Kim G.H, Koh Y.J, Jung J.S, Hur J.S. 2015a. Control of postharvest fruit rot diseases of kiwifruit by antagonistic bacterium Bacillus subtilis. Acta Horticulturae 1096, 377-382.
76. Kim Y.S, Balaraju K, Jeon Y. 2016. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits. Journal of Zhejiang University Science B 17(12), 931-940.
77. Knox O.G, Killham K, Leifert C. 2000. Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis. Applied Soil Ecology 15, 227-231.
Oksana Lastochkina et al. Int. J. Hort. Sci. Technol. 2021 8(2): 103-122
78. Kolupaev Y.E, Yastreb T.O. 2015. Physiological functions of nonenzymatic antioxidants of plants. Proceedings of KhNU 2, 6-25.
79. Krebs B, Ockhardt A, Hoeding B, Bendzko P, Maximov J, Etzel W. 1996. Cyclic peptides from Bacillus amyloliquefaciens useful antimycotics, antivirals, fungicides, nematicides etc. DE19641213.
80. Khedher S.B, Kilani-Feki O, Dammak M, Jabnoun-Khiareddine H, Daami-Remadi M, Tounsi S. 2015. Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rendus Biologies 338, 784-792.
81. Lastochkina O.V, Shirokov A.V, Yuldashev R.A, Pusenkova L.I. 2015. Assessment of influence of bacterial strains of Bacillus subtilis in mix with salicylic acid on productivity and infestation of potato tubers. “International scientific-practical conference "Agricultural science in the innovative development of agriculture” Abstracts. Ufa, Russia 1, 112-117.
82. Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova D, Khairullin R, Aliniaeifard S. 2017. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant physiology and biochemistry 121, 80-88.
83. Lastochkina O.V, Pusenkova L.I, Il’yasova E.Y, Aliniaeifard S. 2018. Effect of Bacillus subtilis based biologicals on physiological and biochemical parameters of sugar beet (Beta vulgaris L.) plants infected with Alternaria alternata. Agrobiology 53(5), 958-968.
84. Lastochkina O. 2019. Bacillus subtilis-mediated abiotic stress tolerance in plants. In: Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol 2(6). Eds: Islam M.T, Rahman M.M, Pandey P, Boehme M.H, Haesaert G. Springer Nature Switzerland AG.
85. Lastochkina O, Seifi Kalhor M, Aliniaeifard S, Baymiev A, Pusenkova L, Garipova S, Kulabuhova D, Maksimov I. 2019a. Bacillus spp.: Efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 8(4), 7.
86. Lastochkina O, Baymiev A, Shayahmetova A, Garshina D, Koryakov I, Shpirnaya I, Pusenkova L, Mardanshin I, Kasnak C, Palamutoglu R. 2020. Effects of endophytic Bacillus subtilis and salicylic acid on postharvest diseases (Phytophthora infestans, Fusarium oxysporum)
development in stored potato tubers. Plants 9, 76.
87. Lastochkina O, Pusenkova L, Garshina D, Yuldashev R, Shpirnaya I, Kasnak C, Palamutoglu R, Mardanshin I, Garipova S, Sobhani M, Aliniaeifard S. 2020a. The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum L. tubers infected with fusarium dry rot. Plants 9(6), 738.
88. Lastochkina O, Garshina D, Allagulova C, Fedorova K, Koryakov I, Vladimirova A. 2020b. Application of endophytic Bacillus subtilis and salicylic acid to improve wheat growth and tolerance under combined drought and Fusarium root rot stresses. Agronomy 10, 1343.
89. Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton H.A, Harbour A. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Applied Microbiology 78, 97-108.
90. Leelasuphakul W, Sivanunsakul P, Phongpaichit S. 2006. Purification, characterization and synergistic activity of b1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight pathogens. Enzyme and Microbial Technology 38, 990-997.
91. Leelasuphakul W, Hemmanee P, Chuenchitt S. 2008. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology 48, 113-121.
92. Li Y, Xu S, Jing G, Pan S, Wang G. 2016. Bacillus subtilis-regulation of stomatal movement and instantaneous water use efficiency in Vicia faba. Plant Growth Regulation 78, 43-55.
93. Maksimov I.V, Veselova S.V, Nuzhnaya T.V, Sarvarova E.R, Khairullin R.M. 2015. Plant growth promoting bacteria in regulation of plant resistance to stress factors. Russian Journal of Plant Physiology 62(6), 715-726.
94. Maksimov I, Khairullin R. 2016. The role of Bacillus bacterium in formation of plant defence: mechanisms and reactions. The handbook of microbial bioresources.
95. Mannanov R.N, Sattarova R.K, 2001. Antibiotics produced by Bacillus bacteria. Chemistry of Natural Compounds 37, 117-123.
Oksana Lastochkina et al. Int. J. Hort. Sci. Technol. 2021 8(2): 103-122
96. Morelli M, Bahar O, Papadopoulou K.K, Hopkins D.L, Obradović A. 2020. Editorial: Role of endophytes in plant health and defense against pathogens. Frontiers in Plant Science 11, 1312.
97. Nautiyal C.S, Srivastava S, Chauhan P.S, Seem K, Mishra A, Sopory S.K. 2013. Plant growth promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry 66, 1-9.
98. Naveed M, Baqir Hussain M, Zahir A.Z, Mitter B, Sessitsch A. 2014. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth regulation 73, 121-131.
99. Niu D.D, Liu H.X, Jiang C.H, Wang Y.P, Wang Q.Y, Jin H.L, Guo J.H. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in A. thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Molecular Plant-Microbe Interactions 24, 533-542.
100. Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari K, Khan A.L, Khan A, AL-Harrasi A., Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review 2018. Microbiological Research 209, 21-32.
101. Okigbo R.N. 2005. Biological control of postharvest fungal rot of yam (Dioscorea spp.) with Bacillus subtilis. Mycopathologia 159, 307-314.
102. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied Microbiology and Biotechnology 69(1), 29-38.
103. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J.L, Thonart P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology 9, 1084-1090.
104. Ongena M, Jacques P. 2008. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology 16, 115-125.
105. Pandey P.K, Singh M.C, Singh S.S, Kumar M, Pathak M, Shakywar R.C, Pandey A.K. 2017. Inside the plants: endophytic bacteria and their functional attributes for plant growth promotion. International Journal of Current Microbiology and Applied Sciences 6(2), 11-21.
106. Partida-Martinez L.P, Heil M. 2011. The microbe-free plant: fact or artifact? Frontiers in Plant Science 2, 100.
107. Pereyra M.A, García P, Colabelli M.N, Barassi C.A, Creus C.M. 2012. A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Applied Soil Ecology 53, 94-97.
108. Pitzschke A. 2016. Developmental peculiarities and seed borne endophytes in quinoa: omnipresent, robust Bacilli contribute to plant fitness. Frontiers in Microbiology 7, 2.
109. Pusenkova L.I, Il’yasova E.Y, Maksimov I.V, Lastochkina O.V. 2015. Enhancement of adaptive capacity of sugar beet crops by microbial biopreparations under biotic and abiotic stresses. Agricultural Biology 50(1), 115–123.
110. Pusenkova L.I, Il'yasova E, Lastochkina O.V, Maksimov I. V, Leonova S.A. 2016. Changes in the species composition of the rhizosphereand phyllosphere of sugar beet under the impact of biological preparations based on endophytic bacteria and their metabolites. Eurasian Soil Sciences 49(10), 1136-1144.
111. Romero D, de Vicente A, Rakotoaly R.H, Dufour S.E, Veening J.W, Arrebola E, Cazorla F.M, Kuipers O.P, Paquot M, PérezGarcía A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interaction 20, 430-440.
112. Roychoudhury A, Paul S, Basu S. 2013. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Reports 32, 985-1006.
113. Saleh S.A, Heuberger H, Schnitzler W.H. 2005. Alleviation of salinity effect on artichoke productivity by Bacillus subtilis FZB24, supplemental Ca and micronutrients. Journal of Applied Botany and Food Quality 79, 24-32.
114. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda Mdel C, Glick B.R. 2016. Plant growth-promoting bacterial endophytes. Microbiological Research 183, 92-99.
115. Sarma B.K, Yadav K.S, Singh D.P, Singh H.B. 2018. Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management. In: Maheshwari D (ed) Bacteria in agrobiology: stress management. Springer, Berlin 225-238.
Oksana Lastochkina et al. Int. J. Hort. Sci. Technol. 2021 8(2): 103-122
116. Saikia J, Sarma R.K, Dhandia R, Yadav A, Bharali R, Gupta V.K, Saikia R. 2018. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports 8, 3560.
117. Sayed S.A, Atef A.S, Soha E. 2011. Response of three sweet basil cultivars to inoculation with Bacillus subtilis and arbuscular mycorrhizal fungi under salt stress conditions. Natural Sciences 9(6), 31-36.
118. Seifi kalhor M.S, Aliniaeifard S, Self M, Javadi E, Bernard F, Li T, Lastochkina O. 2018. Rhisobacteria Вacillus subtilis reduces toxic effects of high electrical conductivity in soilless culture of lettuce. Acta horticulturae 1227, 471-478.
119. Seifikalhor M, Aliniaeifard S, Shomali A, Azad N, Hassani B, Lastochkina O, Li T. 2019a. Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signaling and Behavior 14, 1665455.
120. Seifikalhor M, Aliniaeifard S, Hassani B, Niknam V, Lastochkina O. 2019b. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Reports 38, 847-867.
121. Seifikalhor M, Aliniaeifard S, Bernard F, Seif M, Latifi M, Hassani B, Didaran F, Bosacchi M, Rezadoost H, Li T. 2020. γ-Aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems. Scientific Reports 10, 3356.
122. Seifikalhor M, Hassani S.B, Aliniaeifard S. 2019. Seed priming by cyanobacteria (Spirulina platensis) and salep gum enhances tolerance of maize plant against cadmium toxicity. Journal of Plant Growth Regulation 39, 1009-1021.
123. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas D, Reinhold-Hurek B. 2012. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant Microbe Interactions 25(1), 28-36.
124. Singh U, Sarma B, Singh D. 2003. Effect of plant growth-promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum). Current Microbiology 46, 131-140.
125. Shakirova F.M, Avalbaev A.M, Bezrukova M.V, Fatkhutdinova R.A, Maslennikova D.R, Yuldashev R.A, Allagulova C.R, Lastochkina O.V. 2012. Hormonal intermediates in the protective action of exogenous phytohormones in wheat plants under salinity: a case study on wheat. In: Khan N, Nazar R, I qbal N, Anjum N (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin 185-228.
126. Shafi О, Tian H, Ji M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology and Biotechnological Equipment 31(3), 446-459.
127. Shomali A, Aliniaeifard S. 2020. Overview of signal transduction in plants under salt and drought stresses, In: Hasanuzzaman M, Tanveer M. (Eds.), Salt and drought stress tolerance in plants: Signaling networks and adaptive mechanisms. Springer International Publishing, Cham 231-258.
128. Su J, Zhang M, Zhang L, Sun T, Liu Y, Lukowitz W, Xu J, Zhang S. 2017. Regulation of stomatal immunity by interdependent functions of a pathogen‐responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell 29, 526-542.
129. Sulieman S, Schulze J. 2010. Phloem‐derived γ‐aminobutyric acid (GABA) is involved in upregulating nodule N2 fixation efficiency in the model legume Medicago truncatula. Plant Cell Environment 33(12), 2162-2172.
130. Touré Y, Ongena M, Jacques P, Guiro A, Thonart P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology 96(5), 1151-1160.
131. Timmusk S, Abd El-Daim I.A, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PloS one 9(5), e96086.
132. Turan M, Ekinci M, Yıldırım E, Güneş K, Karagöz K, Kotan R, Dursun A. 2014. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content in cabbage (Brassica oleracea) seedlings. Turkish Journal of Agricultural Foresty 38, 327-333.
133. Thrall P.H, Hochberg M.E, Burdon J.J, Bever J.D. 2007. Coevolution of symbiotic mutualists
Oksana Lastochkina et al. Int. J. Hort. Sci. Technol. 2021 8(2): 103-122
and parasites in a community context. Trends in Ecology and Evolution 22(3), 120-126.
134. Ullah A, Sun H, Yang X, Zhang X. 2017. Drought coping strategies in cotton: Increased crop per drop. Plant Biotechnology Journal 15, 271-284.
135. van Meeteren U, Aliniaeifard S. 2015. Stomata and postharvest physiology, Innovations in Postharvest Technology. CRC Press.
136. Van Meeteren U, Kaiser E, Malcolm Matamoros P, Verdonk J.C, Aliniaeifard S. 2020. Is nitric oxide a critical key factor in ABA-induced stomatal closure? Journal of Experimental Botany 71, 399-410.
137. van Loon L.C. 2007. Plant responses to plant growth-promoting rhizobacteria. In: Bakker P.A, Raaijmakers J.M, Bloemberg G, Höfte M, Lemanceau P, Cooke B.M. (eds) New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research. Springer, Dordrecht.
138. Vasileva E.N, Akhtemova G.A, Zhukov V.A, Tikhonovich I.A. 2019. Endophytic microorganisms in fundamental research and agriculture. Ecological genetics 17(1), 19-32.
139. Verma P, Yadav A.N, Khannam K.S, Kumar S, Saxena A.K, Suman A. 2016. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. Journal of Basic Microbiology 56(1), 44-58.
140. Wang Y, Xu Z, Zhu P, Liu P, Zhang Z, Mastuda Y, Toyoda H, Xu L. 2010. Postharvest biological control of melon pathogens using Bacillus subtilis EXWB1. Journal of Plant Pathology 92, 645-652.
141. Waewthongrak W, Pisuchpen S, Leelasuphakul W. 2015. Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biology and Technology 99, 44-49.
142. Woo O.G, Kim H, Kim J.S, Keum H.L, Lee K.C, Sul W.J, Lee J.H. 2020. Bacillus subtilis
strain GOT9 confers enhanced tolerance to drought and salt stresses in Arabidopsis thaliana and Brassica campestris. Plant Physiology and Biochemistry 148, 359-367.
143. Wu L, Huang Z, Li X, Ma L, Gu Q, Wu H, Liu J, Borriss R, Wu Z, Gao X. 2018. Stomatal closure and SA, JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. Frontiers in microbiology 9, 847.
144. Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vicente A, Pérez-García A, Teixidó N. 2012. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Europian Journal of Plant Pathology 132(4), 609-619.
145. Yang D.M, Bi Y, Chen X.R, Ge Y.H, Zhao J. 2006. Biological control of postharvest diseases with Bacillus subtilis (B1 strain) on muskmelons (Cucumis melo L. cv. Yindi). Acta Horticulturae 712 (2), 735-739.
146. Žiarovská J, Medo J, Kyseľ M, Zamiešková L, Kačániová M. 2020. Endophytic bacterial microbiome diversity in early developmental stage plant tissues of wheat varieties. Plants 9, 266.
147. Zhao Y, Shao X.F, Tu K, Chen J.K. 2007. Inhibitory effect of Bacillus subtilis B10 on the diseases of postharvest strawberry. Journal of Fruit Science 24(3), 339-343.
148. Zhou T, Schneider K.E, Li X. 2008. Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola. International Journal of Food Microbiology 126, 180-185.
149. Zhou C, Zhu L, Xie Y, Li F, Xiao X, Ma Z, Wang J. 2017. Bacillus licheniformis SA03 confers increased saline–alkaline tolerance in Chrysanthemum plants by induction of abscisic acid accumulation. Frontiers in plant science 8, 1143.