Document Type : Research paper


1 M. Sc. Horticultural Science Department, Agriculture and Natural Resources College, University of Hormozgan, Bandar Abbas, Iran

2 Horticultural Science Department, Agriculture and Natural Resources College, University of Hormozgan, Bandar Abbas, Iran


The grape berries due to containing organic acids, sugars, aromatic compounds, phenolic compounds (including anthocyanins, flavanols, flavonols, stilbenes (resveratrol)), tannins, and oil in the pulp, skin, and seed have numerous health benefits for human health. In this study, we investigated genetic and phytochemical characteristics of four famous grapevine cultivars (Shiraz, Sirch, Panje Arous, and Yaghouti) at the maturity stage in 10-20º Brix on a cultivar basis. This research was performed at university of Hormozgan in 2017. The results indicated that Sirch cultivar had the highest total anthocyanin content (2733 mg kg-1 FW), total phenolic content (1666 mg kg-1 FW) and total carotenoid in the skin. High correlation (R2 = 0.951) was observed between cultivars skin’s total anthocyanin and total carotenoid contents. The highest quercetin content (1593 mg kg-1 FW) among the studied cultivars was obtained in Panje Arous cultivar (a pink grape) and Sirch cultivar had the highest delphinidin specific anthocyanin content (65.03 mg kg-1 FW). Among the studied cultivars, Shiraz had the highest total soluble sugar (%19.90) and amount of vinegar (950 ml Kg -1 grapes). Analysis of GC-MS results of vinegar, indicated that the highest rate of ethanol (%98.442) was found in Panje Arous cultivar. DNA sequencing and alignment analysis of F3H, UFGT, DFR, and MybA1 gene sequences showed that there was high homology (>%99) among the studied cultivars, therefore it can be concluded that they are derived from a common ancestor.


  1. Arnon D.I. 1949. Copper enzymes in isolated chloroplast. Polyphenol oxidase in Beta Vulgaris. Plant Physiology 24, 1-15.
  2. Biglari F, AlKarkhi A.F.M, Easa A.M. 2008. Antioxidant activity and phenolic content of various data palm (Phoenix dactylifera) fruits from Iran. Food Chemistry 107(4), 1636-1641.
  3. Boss P.K, Davies C, Robinson S.P. 1996. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera Shiraz grape berries and the implications for pathway regulation. Plant Physiology 111, 1059-1066.
  4. Castellarin S.D, Gaspero G.D. 2007. Transcriptional control of anthocyanin biosynthetic genes in pigmentation of naturally occurring grapevines extreme phenotypes for berry pigmentation of naturally occurring grapevines BMC Plant Biology 7, 46.
  5. Chacona M.R, Ceperuelo-Mallafrea V, Maymo-Masipa E, Mateo-Sanzb J.M, Arolac L, Guitierreza C, Fernandez-Reald J.M, Ardevolc A, Simona I, Vendrella J. 2009. Grape-seed procyanidins modulate inflammation on human differentiated adipocytes in vitro. Cytokine 47(2): 137-142.  DOI: 10.1016/j.cyto.2009.06.001.
  6. Conde A, Pimentel D, Neves A, Dinis L-T, Bernardo S, Correia C.M, Geros H, Moutinho-Pereira J. 2016. Kaolin foliar application has a stimulatory effect on phenylpropanoid and flavonoid pathways in grape berries. Frontiers in Plant Science 7, 1150.
  7. Del-Castillo-Alonso M.A, Castagna A, Csepregi K, Hideg E, Jakab G, Jansen M.A.K, Jug T, Llorens L, Matai A, Martinez-Luscher J, Monforte L, Neugart S, Olejnickova J, Ranieri A, Schodel-Hummel K, Schreiner M, Soriano G, Teszlak P, Tittmann S, Urban O, Verdaguer D, Zipoli G, Martinez-Abaigar J, Nunez-Olivera E. 2016. Environmental factors correlated with the metabolite profile of Vitis vinifera cv. Pinot Noir berry skins along a european latitudinal gradient. Journal of Agricultural and Food Chemistry 64(46), 8722-8734.  DOI: 10.1021/acs.jafc.6b03272.
  8. Derradji-Benmenziane F, Djamai R, Cadot Y. 2014. Antioxidant capacity, total phenolic, carotenoid, and vitamin C contents of five tables grape varieties from Algeria and their correlations. Journal International des Sciences de la Vigne et du Vin 48, 153-162.
  9. Dopico-Garcia M.S, Fique A, Guerra L, Afonso J.M, Pereira O, Valentao P, Andrade P.B, Seabra R.M. 2008. Principal components of phenolics to characterize red Vinho Verde grapes: anthocyanins or non-coloured compounds? Talanta. 75(5), 1190-1202.  DOI: 10.1016/j.talanta.2008.01.012.

10. Ebrahimzadeh M.A, Hosseinimehr S.J, Hamidinia A, Jafari M.  2008. Antioxidant and free radical scavenging activity of Feijoa sallowiana fruits peel and leaves. Pharmacologyonline 1, 7-14.

11. Ford C.M, Boss P.K, Hoj P.B. 1998. Cloning and characterization of Vitis vinifera UDP glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. The Journal of Biological Chemistry 273(15), 9224-9233.

12. He J.J, Liu Y.X, Pan Q.H, Cui X.Y, Duan C.Q. 2010. Different anthocyanin profiles of the skin and the pulp of Yan73 (Muscat Hamburg × Alicante Bouschet) grape berries. Molecules 15(3), 1141-1153.  DOI: 10.3390/molecules15031141

13. Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18(9), 477-483.

14. Jeong S.T, Goto-Yamamoto N, Hashizume K, Esaka M. 2006. Expression of the flavonoid 3′hydroxylase and flavonoid 3′, 5′-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Science 170(1), 61-69.

15. Kirk J.O.T, Allen R.L. 1965. Dependance of chloroplast pigment synthesis on protein synthesis: Effect of actidione. Biochemical and Biophysical Research Communications 21(6), 523-530.

16. Kobayashi S, Goto-Yamamoto N, Hirochika H. 2004. Retrotransposon-induced mutations in grape skin color. Science 304(5673), 982.

17. Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10(5), 236-242.  DOI: 10.1016/j.tplants.2005.03.002.

18. Kumar S, Stecher G, Tamura K. 2015. MEGA: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution 33(7), 1870-1874.

19. Maier T, Schieber A, Kammerer D.R, Carle R. 2009. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry 112(3), 525-766.

20. Martinez de Toda F, Sancha J.C, Balda P. 2013. Reducing the sugar and pH of the grape (Vitis vinifera L. cvs‘Grenache’ and ‘Tempranillo’) through a single shoot trimming. South African Journal for Enology and Viticulture 34(2), 246-251.

21. McCready R.M, Guggolz J, Silviera V, Owens H.S. 1950. Determination of starch and amylase in vegetables. Analytical Chemistry 22(9), 1156-1158.

22. Novaka I, Janeiro P, Seruga M. Oliveira-Brett A.M. 2008. Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection. Analytica Chimica Acta 630(2), 107-115.  DOI: 10.1016/j.aca.2008.10.002.

23. Omokolo N.D, Tsala N.G, Djocgoue P.F. 1996. Changes in carbohydrate, amino acid and phenol content in cocoa pods from three clones after infection with Phytophthora megakarya Bra. Annals of Botany 77, 153-158.

24. Pastrana-Bonilla E, Akoh C.C, Sellappan S, Krewer G. 2003. Phenolic content and antioxidant capacity of muscadine grapes. Journal of Agricultural and Food Chemistry 51(18), 5497-5503. DOI: 10.1021/jf030113c.

25. Piccolo S.L, Alfonzo A, Conigliaro G, Moschetti G, Burruano S, Barone A. 2012. A simple and rapid DNA extraction method from leaves of grapevine suitable for polymerase chain reaction analysis. African Journal of Biotechnology 11(45), 10305-10309. DOI:10.5897/AJB11.3023.

26. Sambrook J, Russell D.W. 2001. Molecular Cloning, 3rd ed. Cold Spring Harbor Laboratory Press.

27. Shrikhande A.J. 2000. Wine by-products with health benefits.  Food Research International 33(6), 469-474.

28. Sivilotti P, Herrera J.C, Lisjak K, Cesnik H.B, Sabbatini P, Peterlunger E, Castellarin S. D. 2016. Impact of leaf removal, applied before and after flowering, on anthocyanin, tannin, and methoxypyrazine concentrations in 'Merlot' (Vitis vinifera L.) grapes and wines. Journal of Agricultural and Food Chemistry 64 (22), 4487-4496. DOI: 10.1021/acs.jafc.6b01013.

29. Spacil Z, Novakova L, Solich P. 2008. Analysis of phenolic compounds by high performance liquid chromatography and ultra-performance liquid chromatography. Talanta 76(1), 189-199.  DOI: 10.1016/j.talanta.2008.02.021.

30. Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control
of mitochondrial DNA in humans and chimpanzees. Molecular biology and evolution 10(3), 512-526.

31. Teixeira A, Eiras-Dias J, Castellarin S.D, Geros H. 2013. Berry phenolics of grapevine under challenging environments. International Journal of Molecular Sciences 14, 18711-18739. DOI:10.3390/ijms140918711.

32. Wada M, Kido H, Ohyama K, Ichibangas T, Kishikaw N, Ohba Y, Nakashima M.N, Kurod N, Nakashima K. 2007. Chemiluminescent screening of quenching effects of natural colorants against reactive oxygen species: evaluation of grape seed, monascus, gardenia and red radish extracts as multi-functional food additives. Food Chemistry 101(3), 980-986.

33. Xia E.Q, Deng G.F, Guo Y.J, Li H.B. 2010.  Biological Activities of Polyphenols from Grapes. International Journal of Molecular Sciences 11(2), 622-646. DOI:10.3390/ijms11020622.

34. Xie D.Y, Sharma S.B, Wright E, Wang Z.Y, Dixon R.A. 2006. Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. The Plant Journal 45, 895-907. DOI: 10.1111/j.1365-313X.2006.02655x.

35. Xie S, Song C, Wang X, Liu M, Zhang Z, Xi Z. 2015. Tissue- Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars.  Molecules 20, 22767-22780.  DOI:10.3390/molecules201219883.