Assessing Genetic Diversity of Shishi Date Palm Cultivars in Saudi Arabia and ‎Qatar Using ‎Microsatellite Markers ‎

Document Type : Research paper

Authors

1 Horticulture Department, Faculty of Agriculture, University of Tripoli, Libya

2 Genetic Engineering, Department of Agricultural Research, Ministry of Municipality and Environment, Doha Qatar

3 Biotechnology Research Section, Ministry of Agriculture and Fisheries Sultanate of Oman

4 Ministry of Agriculture, King Saudi Arabia

5 International Center for Agricultural Research in the Dry Areas, (ICARDA), P. O. Box: 2416, Cairo, Egypt

Abstract

In this study fourteen microsatellite primer pairs were used to study the genetic diversity of Shishi Date palm in Qatar. A total of 32 date palm (15 Shishi cultivar, 10 Khalas and seven male date palms) were collected from Qatar and 5 Shihi cultivars were collected from Saudi Arabia ‎for comparison. The Shishi set collected from Qatar was selected from ‎different regions to represent the ‎genetic diversity of this ‎cultivar. The results indicated 98 alleles produced from the 14 microsatellite markers, and the cluster analysis showed four major clusters corresponding o the geographical areas. Similarly, the structure analysis indicated four populations according to statistic K value. PCoA analysis showed three groups (A, B and C) ‎separating Shishi (from Qatar) in group A, ‎Khalas in group B and Shishi (from Saudi Arabia) in ‎group C and no clear group ‎separated the male genotypes. This indicates that the sexual propagation by seeds is the main source of variation in the date palm. This is the first study focusing on Shishi cultivar in Qatar and Saudi Arabia by using molecular markers.

Keywords


  1. Bekheet S. 2013. Direct organogenesis of date palm (Phoenix dactylifera L.) for propagation ‎of true-‎to-type plants. Scientia Agriculturae 4, 85-92.
  2. ‎Billotte N, Marseillac N, Brottier P, Noyer J, Jacquemoud-Collet J, Moreau C, ‎Couvreur T, ‎Chevallier M, Pintaud J, Risterucci A. 2004. Nuclear microsatellite markers ‎for the date palm ‎‎ (Phoenix dactylifera L.): characterization and utility across the genus ‎Phoenix and in other palm ‎genera. Molecular Ecology Notes 4, 256-258. ‎
  3. D, Al-Khayri J, Jain S. 2013. Seedling date palms (Phoenix dactylifera L.) as ‎genetic ‎resources. Emirates Journal of Food and Agriculture 25, 809-830.
  4. Elmeer K, Mattat I. 2015. Genetic diversity of Qatari date palm using SSR markers. ‎Genetics and ‎molecular research: Genetics and Molecular Research 14, 1624-1635.‎
  5. Elshibli S, Korpelainen H. 2008. Microsatellite markers reveal high genetic diversity in ‎date palm ‎‎ (Phoenix dactylifera L.) germplasm from Sudan. Genetica 134, 251-260. ‎
  6. Elshibli, S, Korpelainen H. 2009. Biodiversity of date palms (Phoenix dactylifera L.) in Sudan: chemical, morphological and DNA polymorphisms of selected cultivars. Plant Genetic Resources 7(2), 194-203
  7. Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology 14(8), 2611-2620.
  8. Gower J.C. 1966. Some distance properties of latent root and vector methods used in ‎multivariate ‎analysis. Biometrika 53, 325-338. ‎
  9. Hammer O, Harper D.A.T, Ryan P.D. 2001. Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1), 9.

10. Hamza H, Abederrahim M.A.B, Elbekkay M, Ferchichi A. 2012. Comparison of the ‎effectiveness ‎of ISSR and SSR markers in determination of date palm (Phoenix dactylifera ‎L.) agronomic ‎traits. Australian Journal of Crop Science 7(6), 763. ‎

11. Jarvis D, Padoch C, Cooper H. 2007. Biodiversity, Agriculture, and Ecosystem Services. ‎Managing biodiversity in agricultural ecosystems. Columbia University Press.

12. Liu K, Muse S.V. 2005. PowerMarker: an integrated analysis environment for genetic ‎marker ‎analysis. Bioinformatics 21, 2128-2129. ‎

13. Peakall R, Smouse P.E. 2006. GENALEX 6: genetic analysis in Excel. Population ‎genetic software ‎for teaching and research. Molecular Ecology Notes 6, 288-295. ‎

14. Popenoe P.B. 1973. The date palm. Field Research Projects, Coconut Grove, Miami.

15. Pritchard J.K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155(2), 945-959.

16. Rogers S.O, Bendich A.J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant molecular biology 5(2), 69-76.

17. Shah J. 2014. Date palm cultivation in India: an overview of activities. Emirates Journal of ‎Food and ‎Agriculture 26, 987-999. ‎

18. Torres A.M, Tisserat B. 1980. Leaf isozymes as genetic markers in date palms. American ‎Journal of ‎Botany 67(2), 162-167. ‎

19. Yeh F.C, Yang R.C, Boyle T.B.J, Ye ZH, Mao J.X. 1997. Popgene, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta.

20. Yusuf A, Culham A, Aljuhani W, Ataga C, Hamza A, Odewale J, Enaberue L. 2015. Genetic ‎Diversity of Nigerian Date Palm (Phoenix dactylifera) Germplasm based on ‎Microsatellite ‎Markers. International Journal of Bio-Science and Bio-Technology 7, 121-132. ‎

21. Zaid A, De Wet P.F. 2002. Botanical and Systematic Description of Date Palm. FAO ‎Plant ‎Production and Protection Paper. Date Palm Cultivation 156(1), 14-16. ‎

22. Zehdi S, Sakka H, Rhouma A, Salem A.O.M, Marrakchi M, Trifi M. 2004. Analysis ‎of Tunisian ‎date palm germplasm using simple sequence repeat primers. African journal of ‎biotechnology ‎‎3, 215-219. ‎