Growth Dynamics and Cell Viability in Tomato Suspension Cultures Derived from Different Types of Calli

Document Type : Research paper

Authors

Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

To establish a dynamic and fine suspension culture, four different methods of tomato cell suspension culture were compared. Hypocotyl explants of the tomato cultivar Jina were used for callus induction on Murashige and Skoog (MS) Medium supplemented with three different phytohormone combinations. Then, one gram of each type of calli was transferred to 50 mL of liquid MS medium with four combinations of auxins and cytokinins to produce cell suspensions. The growth rate, judged by cell turbidity, cell fresh weight, and cell viability was evaluated. The best suspension culture was obtained by using friable calli formed on MS medium containing 1 mg L-1 NAA and 0.1 mg L-1 kinetin, transferred to the liquid MS supplemented with 2 mg L-1 NAA, 0.2 mg L-1 2, 4-D and 0.2 mg L-1 zeatin.

Keywords


Castro-Concha L.A, Escobedo R.M, De Miranda-Ham M.L. 2006. Measurement of cell viability in in vitro cultures. In: Plant Cell Culture Protocols, Springer, 71-76.
2. Coder D.M. 2001. Assessment of cell viability. Current Protocols in Cytometry 15, 2-9.
3. Fischer R, Emans N, Schuster F, Hellwig S, Drossard J. 1999. Towards molecular farming in the future: using plant‐cell‐suspension cultures as bioreactors. Biotechnology and Applied Biochemistry 30, 109-112.
4. Hellwig S, Drossard J, Twyman R.M, Fischer R. 2004. Plant cell cultures for the production of recombinant proteins. Nature Biotechnology 22, 1415-1422.
5. Huang T.K, McDonald K.A. 2012. Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnology Advances 30, 398-409.
6. Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M. 2007. An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proceedings of the National Academy of Sciences 104, 13833-13838.
7. Jehan S, Hassanein A.M. 2013. Hormonal requirements trigger different organogenic pathways on tomato nodal explants. American Journal of Plant Sciences 4, 2118-2125.
8. Khokhar M, Mukherjee D. 2011. Role of kinetin and a morphactin in leaf disc senescence of Raphanus sativus L. under low light. Physiology and Molecular Biology of Plants 17, 247.
9. Kieran P.M, MacLoughlin P.F, Malone D.M. 1997. Plant cell suspension cultures: some engineering considerations. Journal of Biotechnology 59, 39-52.
10. Kwon T.H, Kim Y.S, Lee J.H, Yang M.S. 2003. Production and secretion of biologically active human granulocyte-macrophage colony stimulating factor in transgenic tomato suspension cultures. Biotechnology Letters 25, 1571-1574.
11. Li X. 2011. Histostaining for tissue expression pattern of promoter-driven GUS activity in Arabidopsis. Bio-Protocol Bio 101, 93.
12. Lin C, Hsu C, Yang L, Lee L, Fu J, Cheng Q, Wu F, Hsiao H.C, Zhang Y, Zhang R. 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single‐cell mutation detection to mutant plant regeneration. Plant Biotechnology Journal 16, 1295-1310.
13. Moscatiello R, Baldan B, Navazio L. 2013. Plant cell suspension cultures. Methods Mol Biol 953, 77-93. https://doi.org/10.1007/978-1-62703-152-3-5.
14. Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.
15. Mustafa N.R, De Winter W, Van Iren F, Verpoorte R. 2011. Initiation, growth and cryopreservation of plant cell suspension cultures. Nature Protocols 6, 715.
16. Neumann K.H, Kumar A, Imani J. 2009. Plant cell and tissue culture-A tool in Biotechnology: Basics and Application. Springer.
17. Nover L, Kranz E, Scharf K.D. 1982. Growth cycle of suspension cultures of Lycopersicon
Growth Dynamics and Cell Viability in Tomato Suspension Cultures Derived from … 35
esculentum and L. peruvianum. Biochemie Und Physiologie Der Pflanzen 177, 483-499.
18. Ondzighi-Assoume C.A, Willis J.D, Ouma W.K, Allen S.M, King Z, Parrott W.A, Liu W, Burris J.N, Lenaghan S.C, Stewart C.N. 2019. Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (Panicum virgatum L.). Biotechnology for Biofuels 12, 1-14.
19. Osibe D.A, Aoyagi H. 2019. A novel strategy for the synthesis of gold nanoparticles with Catharanthus roseus cell suspension culture. Materials Letters 238, 317-320. https://doi.org/ 10.1016/j.matlet.2018.12.031.
20. Patil R.S, Davey M.R, Power J.B, Cocking E.C. 2003. Development of long-term cell suspension cultures of wild tomato species, Lycopersicon chilense Dun. As regular source of protoplast: an efficient protoplast-to-plant system. Indian Journal of Biotechnology 2, 504-511.
21. Permyakova N.V, Sidorchuk Y.V, Marenkova T.V, Khozeeva S.A, Kuznetsov V.V, Zagorskaya A.A, Rozov S.M, Deineko E.V. 2019. CRISPR/Cas9-mediated gfp gene inactivation in Arabidopsis suspension cells. Molecular Biology Reports 46, 5735-5743.
22. Rademacher T, Sack M, Blessing D, Fischer R, Holland T, Buyel J. 2019. Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering. Plant Biotechnology Journal 17, 1560-1566.
23. Robledo-Paz A, Vázquez-Sánchez M.N, Adame-Alvarez R.M, Jofre-Garfias A.E. 2006. Callus and suspension culture induction, maintenance and characterization. In: Plant Cell Culture Protocols, Springer, 59-70.
24. Sello S, Moscatiello R, La Rocca N, Baldan B,Navazio L. 2017. A rapid and efficient
method to obtain photosynthetic cell suspension cultures of Arabidopsis thaliana. Frontiers in Plant Science 8, 1444.
25. Strober W. 2015. Trypan blue exclusion test of cell viability. Current Protocols in Immunology 111, A3.B.1-A3.B.3.
26. Tan H.C, Tan B.C, Wong S.M, Khalid N. 2016. A medicinal ginger, Boesenbergia rotunda: from cell suspension cultures to protoplast derived callus. Sains Malaysiana 45, 795-802.
27. Tewes A, Glund K, Walther R, Reinbothe H. 1984. High yield isolation and rapid recovery of protoplasts from suspension cultures of tomato (Lycopersicon esculentum). Zeitschrift Für Pflanzenphysiologie 113, 141-150.
28. Toriyama K, Hinata K. 1985. Cell suspension and protoplast culture in rice. Plant Science 41, 179-183.
29. Towill L.E, Mazur P. 1975. Studies on the reduction of 2, 3, 5-triphenyltetrazolium chloride as a viability assay for plant tissue cultures. Canadian Journal of Botany 53, 1097-1102.
30. Venkatachalam P, Geetha N, Priya P, Rajaseger G, Jayabalan N. 2000. High frequency plantlet regeneration from hypocotyl explants of tomato (Lycopersicon esculentum Mill.) via organogenesis. Plant Cell Biotechnology and Molecular Biology 1, 95-100.
31. Wayase U.R, Shitole M.G. 2014. Effect of plant growth regulators on organogenesis in tomato (Lycopersicon esculentum Mill.) cv. Dhanashri. International Journal of Pure and Applied Sciences and Technology 20, 65-71.
32. Williams P.D, Wilkinson A.K, Lewis J.A, Black G.M, Mavituna F. 1988. A method for the rapid production of fine plant cell suspension cultures.Plant Cell Reports 7, 459-462.