Stimuli Effects of Different LEDs on Some Morphological and Biochemical Traits of Two Varieties of Calendula officinalis

Document Type : Research paper

Authors

1 Horticulture Department, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran

2 Young Researchers Club, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Abstract

In the production of flowers and ornamental plants, especially in the advanced greenhouse conditions, it is important to have a good light source and its accurate management. This study aimed to evaluate the effect of light quality on morphological and biochemical traits of two Marigold genotypes (Iranian-native and Gitana). This experiment was conducted in a completely randomized design with three replications. The treatments included five light qualities including red, blue, 70% red:30% blue (70%:30%), and white lights with an intensity of 500 μmol m-2 s-1 [photosynthetic photon flux density (PPFD)] and greenhouse natural light (with an average intensity of 650 PPFD). The results showed that light quality had significant effects on all studied traits at p

Keywords


Aliniaeifard S, Seif M, Arab M, Zare Mehrjerdi M, Li T, Lastochkina O. 2018. Growth and photosynthetic performance of calendula officinalis under monochromatic red light. International Journal of Horticultural Science and Technology 5(1): 123-132.
2. Arnon D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenol-oxidase in Beta vulgaris. Plant Physiology 2(1): 1-15.
3. Ashwlayan V.D, Kumar A, Verma M, Garg V.K, Gupta S.K. 2018. Therapeutic potential of Calendula officinalis. Pharmacy and Pharmacology International Journal 6(2): 149- 155.
4. Biju J, Sulaiman C.T, Satheesh G, Reddy V.R.K. 2014. Total phenolics and flavonoids in selected medicinal plants from Kerala. International Journal of Pharmacy and Pharmaceutical Sciences 6: 406-408.
5. Brotosudarmo T.H.P, Prihastyanti M.N.U, Gardiner A.T, Carey A, Cogdell R.G. 2016. The light reactions of photosynthesis as a paradigm for solar fuel production. Energy Procedia 47: 283-289.
6. Caliskan O, Kurt D. 2018. Flower yields of pot Marigold (Calendula officinalis L.) plants as affected by flowering durations and number of harvests. Journal of Medicinal Plants Studies 6(6): 159-161.
7. Cosgrove D.J. 1993. Photomodulation of growth. In: R.E. Kendrick, G.H.M. Kronenberg (Eds.) Photomorphogenesis in plants, 2nd edition. Dordrecht, Kluwer Academic Publishers. Netherlands.
8. Currey C.J, Lopez R.G. 2013. Cuttings of Impatiens, Pelargonium, and Petunia propagated under light-emitting diodes and high-pressure sodium lamps have comparable growth, morphology, gas exchange, and post-transplant performance. Horticultural Science 48: 428-434.
9. Darko E, Heydarizadeh P, Schoefs B, Sabzalian M.R. 2014. Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philosophical Transactions of the Royal Society B 369: 213-243.
10. Frechilla S, Talbott L.D, Bogomolni R.A, Zeiger E. 2000. Reversal of blue lightstimulated stomatal opening by green light. Plant Physiology 41: 71-176.
11. Fukuda N, Ishii Y, Ezura H, Jorunn E.O. 2011. Effects of light quality under red and blue light emitting diodes on growth and expression of FBP28 in petunia. Acta horticulturae 907: 361- 366.
12. Gruda N, Tanny J. 2014. Protected crops. In: G.R. Dixon, D.E. Aldous (Eds) Horticulture plants for people and places. Prod Hort SSB Media Verlag, Heidelberg. New York.
13. Hernandez-Saavedra D, Perez-Ramirez I. F, Ramos-Gomez M, Mendoza-Diaz S, LoarcaPina G, Reynoso-Camacho R. 2015. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesityassociated cardiovascular risk. Medicinal Chemistry Research 25(1): 163-172.
14. Hichri I, Barrieu F, Bogs J, Kappel Ch, Delrot S, Lauvergeat V. 2011. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany 62(8): 2465-2483.
15. Hogewoning S.W, Trouwborst G, Maljaars H, Poorter H, Van Ieperen W, Harbinson J. 2010. Blue light dose responses of leaf photosynthesis, morphology, and chemical composition of Cucumissativus grown under different combinations of red and blue light. Journal of Experimental Botany 61: 3107-3117.
16. Inoue S.I, Kinoshita T. 2017. Blue Light Regulation of Stomatal Opening and the Plasma Membrane H+ -ATPase. Plant Physiology 174(2): 531-538.
17. Jan N, Andrabi K. I, John R. 2017. Calendula officinalis- An important medicinal plant with potential biological properties. Proceedings of the Indian National Science Academy 83(4): 769-787.
18. Johkan M, Shoji K, Goto F, Hashida S.N, Yoshihara T. 2010. Blue light-emitting diode light irradiation of seedlings improves seed quality and growth after transplanting in red leaf lettuce. Horticultural Science 45: 1809- 1814.
19.Johnson M.P. 2016. Photosynthesis. Essays in Biochemistry 60(3): 255-273.
20. Khalid A.K, Silva J.A.T. (2012). Biology of Calendula officinalis Linn. focus on pharmacology biological activities and agronomic practices. Medicinal and Aromatic Plant Science and Biotechnology 6(1): 12-27.
21. Kim S.J, Hahn E.J, Heo J.W, Paek K.Y. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae 101: 143-151.
22. Kurkin V.A, Sharova O.V. 2007. Flavonoids from Calendula officinalis flowers. Chemistry of Natural Compounds 43: 216-217.
23. Lee S.W, Seo J.M, Lee M.K, Chun J.H, Antonisamy P, Arasu MV, Suzuki T, Al-Dhabi NA, Kim S.J. 2014. Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. Industrial Crops and Products 54: 320-326.
24. Lefsrud M.G, Kopsell D.A, Sams C.E. 2008. Irradiance from distinct wavelength lightemitting diodes affect secondary metabolites in kale. Horticultural Science 43: 2243-2244.
25. Li H.M, Xu Z.G, Tang C.M. 2010. Effect of light emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell, Tissue and Organ Culture 103: 155-163.
26. Lichtenthaler H. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods of Enzymology 148: 350-382.
27. Lin K.H, Huang M.Y, Huang W.D, Hsu M.H, Yang Z.W, Yang C.M. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactucasativa L. var. capitata). Scientia Horticulturae 150: 86-91.
28. Liu M, Xu Z, Yang Y, Feng Y. 2011. Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell, Tissue and Organ Culture 106(1):1- 10
29. Lobiuc A.V, Vasilache M, Oroian T, Stoleru M, Burducea, Pintilie O.M. Zamfirache M. 2017. Blue and Red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. Microgreens. Molecules 22(12): 2111-2125.
30. Martin F, Mastebroek D. Gorp K.V. 2005. A grower’s manual for Calendula officinalis L. ADAS Bridget Research Centre.
31. Miao Y.X, Wang X.Z, Gao L.H, Chen Q.Y, Qu M. 2016. Blue light is more essential than red light for maintaining the activities of photosystem ii and i and photosynthetic electron transport capacity in cucumber leaves. Journal of Integrative Agriculture 15(1): 87-100.
32. Moghaddasi M.Sh, Haddad Kashani H. 2012. Pot Marigold (Calendula officinalis) medicinal usage and cultivation. Scientific Research and Essays 7(14): 1468-1472.
33. Moghtader M, Salari H, Mozafari H, Farahmand A. 2016. Evaluation the qualitative and quantitative essential oil of Calendula officinalis and its antibacterial effects. Iranian Journal of Cellular and Molecular Researches 29(3): 331- 339.
34. Mott K.A. 2009. Opinion: Stomatal responses to light and CO2 depend on the mesophyll. Plant, Cell and Environment 32: 1479-1486.
35. Muley B.P, Khadabadi S.S, Banarase N.B. 2009. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A review. Tropical Journal of Pharmaceutical Research 8(5): 455- 465.
36. Muneer S, Kim E.J, Park J.S, Lee J.H. 2014. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International Journal of Molecular Sciences 15: 4657-4670.
37. Nam T.G, Kim D, Eom S.H. 2017. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts. Food Science Biotechnoly 27(1): 169- 176.
38. Naved T, Ansari S.H, Mukhtar H.M, Ali M. 2005. New triterpenic esters of oleanene-series from the flowers of Calendula officinalis L. Journal of Medicinal Chemistry 44: 1088-1091.
39. Perez-Balibrea S, Moreno D.A, García-Viguera C. 2008. Influence of light on health-promoting phytochemicals of broccoli sprouts. Journal of the Science of Food and Agriculture 88(5):904– 910.
40. Raju S, Shah S, Gajbhiye N. 2013. Effect of light intensity on photosynthesis and accumulation of sennosides in plant parts of senna (Cassia angustifolia Vahl.). Indian Journal of Plant Physiology 3: 285-289.
41. Ramakrishna A, Dayananda C, Giridhar P, Rajasekaran T, Ravishankar G.A. 2011. Photoperiod influences endogenous indoleamines in cultured green alga Dunaliella bardawil. Indian Journal of Experimental Biology 49: 234-240.
42. Randall W.C, Lopez R.G. 2014. Comparison of supplemental lighting from high-pressure sodium lamps and light emitting-diodes during bedding plant seedling production. Horticultural Science 49(5): 589-595.
43. Rao M.K.V, Raghavendra A.S, Janardhan P.K. 2006. Physiology and molecular biology of stress tolerance in plants. Published by Springer, Dordrecht, Netherlands.
44. Safdar W, Majeed H, Naveed I, Kayani W. Kh, Ahmed H, Hussain S, Kamal A. 2010. Pharmacognostical study of the medicinal plant Calendula officinalis L. International Journal of Cell and Molecular Biology 1(2): 108-116.
45. Savvides A, Fanourakis D, van Ieperen W. 2012. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. Journal of Experimental Botany 63(3): 1135- 1143.
46. Schwartz A, Zeiger E. 1984. Metabolic energy for stomatal opening: Roles of photophosphorylation and oxidative phosphorylation. Planta 161: 129-136.
47. Shahmoradi H, Naderi D. 2018. Improving effects of salicylic acid on morphological, physiological and biochemical responses of saltimposed winter jasmine. International Journal of Horticultural Science and Technology 5(9): 219- 230.
48. Shengxin C, Chunxia L, Xuyang Y, Song C, Xuelei J, Xiaoying L, Zhigang X, Rongzhan G. 2016. Morphological, Photosynthetic, and Physiological Responses of Rapeseed Leaf to Different Combinations of Red and Blue Lights at the Rosette Stage. Front Plant Science 7: 1144-1156.
49. Shiga T, Shoji K, Shimada H, Hashida S.N, Goto F, Yoshihara T. 2009. Effect of light quality on rosmarinic acid content and antioxidantactivity of sweet basil, Ocimum basilicum L. Plant Biotechnology 26: 255-259.
50. Son K.H, Oh M. M. 2013. Leaf Shape, Growth, and Antioxidant Phenolic Compounds of Two Lettuce Cultivars Grown under Various Combinations of Blue and Red Light-emitting Diodes. HortScience 48(8): 988-995.
51. Steele R. 2004. Understanding and measuring the shelf-life of food. Woodhead Publishing.
52. Stutte G.W, Edney S, Skerritt T. 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. Horticultural Science 44: 79-82.
53. Sun N, Wei M, Yan L, Wang XF, Yang FJ, Shi QH (2016) Effects of light quality on carbon and nitrogen metabolism and enzyme activities in tomato seedlings. Acta Horticulturae 43(1):80- 88.
54. Ukiya M, Akihisa T, Yasukava K, Tokuda H, Suzuki T and Kimura Y. 2006. Antiinflammatory, anti-tumorpromoting and cytotoxic activities of constituents of Marigold (Calendula officinalis) flowers. Journal of Natural Products 69: 1692-1696.
55. Verma P.K, Raina R, Agarwal S, Kour H. 2018. Phytochemical ingredients and pharmacological potential of Calendula officinalis Linn. Pharmaceutical and Biomedical Research 4(2): 1-17.
56. Wade H.K, Bibikova T.N, Valentine W.J, Jenkins G.I. 2001. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant Journal 25: 675-685.
57. Wang H, Gu M, Cui J, Shi K, Zhou Y, Yu J. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B: Biology 96(1): 30-37.
58. Ward J.M, Cufr C.A, Denzel M.A, Neff M.M. 2005. The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis. Plant Cell 17(2):475-485.
59. Zhang T, Shi Y, Piao F, Sun Zh. 2018. Effects of different LED sources on the growth and nitrogen metabolism of lettuce. Plant Cell, Tissue and Organ Culture 134(2): 231-240.
60. Zhang T, Shi Y, Wang Y, Liu Y, Zhao W, Piao F, Sun Zh. 2017. The effect of different spectral LED lights on the phenotypic and physiological characteristics of lettuce (Lactuca sativa) at picking stage. Journal of Biochemistry and Biotechnology 1(1): 14-19.