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 In recent years, the application of deep learning models has 
significantly advanced the field of computer vision, enabling automated 
recognition and classification of various objects, including flowers. This 
research begins with exploring two distinct pre-trained convolutional 
neural networks (CNNs): VGG16 and Xception. Each model has 
architecture and performance characteristics that are analyzed and 
compared to establish a baseline for flower species classification. To 
enhance classification performance further, we introduce a hybrid 
model that fuses the extracted features from VGG16 and Xception. 
These features are concatenated and fed into a dense layer with ReLU 
activation, followed by a softmax classifier, which leverages the 
combined knowledge of hybrid models to classify various species of 
flowers accurately. Experimental results are presented on a benchmark 
flower dataset from Kaggle, demonstrating the effectiveness of the 
proposed hybrid model in achieving state-of-the-art classification 
accuracy. The results highlight the performance of the proposed hybrid 
model for 25 epochs with 512 dense layers, showcasing a remarkable 
state-of-the-art classification accuracy of 91.20% on the Kaggle flower 
dataset. The comprehensive evaluation includes quantitative metrics 
such as accuracy, precision, recall, and F1-score, highlighting how 
robust the model is and its generalization capabilities. The findings in 
this research can assist in developing deep learning-based flower 
species classification systems.  
 
Database: https://www.kaggle.com/datasets/kausthubkannan/5-
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Introduction1 
Flowers, with their vast diversity in shapes, 
colors, and structures, are not just symbols of 
beauty but also play crucial roles in industries 
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such as pharmaceuticals, cosmetics, and 
agriculture (Ari Peryanto et al., 2022). 
Researchers consider classification a principal 
task due to the numerous uses and wide variety 
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of flowers. Traditional methods of flower 
classification primarily revolved around manual 
feature extraction, emphasizing aspects such as 
color, texture, and shape (Xiaoxue Li et al., 2021). 
This process, though functional, is labor-
intensive, subjective, and can often be limited by 
the expertise of the individual involved. With 
more than 250,000 known species of flowering 
plants, manual classification, even with 
conventional image processing techniques, 
becomes a daunting and error-prone task, 
especially in intricate datasets where flowers 
share similar features (Burhan Duman et al., 
2022). 
Enter the era of deep learning and artificial 
intelligence, which has provided transformative 
solutions across various domains, including 
image classification. Unlike conventional image 
processing methods, deep learning models, 
especially convolutional neural networks (CNNs), 
can automatically and adaptively learn and 
extract hierarchical features from raw image data. 
Among such models, the deep learning 
architecture of convolutional neural networks has 
been identified as a potent tool for large-scale 
image classification tasks, eliminating the 
challenges and inefficiencies associated with 
manual feature extraction (Touqeer Abbas et al., 
2022). These networks excel in processing 
multidimensional signals and, through 
convolution, extract relevant features that lead to 
significant performance improvements in tasks 
such as flower classification. 
Various deep learning architectures, like VGG16 
and Xception, have emerged recently. They offer 
advanced capabilities in feature extraction and 
classification tasks. Moreover, the evolution of 
hybrid models that leverage multiple networks 
has further enhanced the accuracy and 
robustness of classification systems. This work 
explores the potential of these architectures, 
individually through transfer learning and in a 
hybrid setting as a feature extractor, to classify 
different species of flowers, aiming for a high 
accuracy, efficient, and robust solution that could 
revolutionize flower classification across diverse 
applications. 
Thus, the objective of the proposed work is:  
• Investigate the performance of prominent deep 
learning architectures, such as VGG16 and 
Xception, through transfer learning in flower 
classification. 
• Assess the feature extraction capabilities of 
hybrid VGG16 and Xception architecture, 
identifying the strengths and weaknesses 
pertinent to the classification task. 
• Compare the performance of the hybrid VGG16 
and Xception architecture with that of the Neural 

Network, Random Forest Classifier with 
Histogram-Based Image Features, VGG16 and 
Xception Transfer Learning models. 
The present article maintains the following 
approach: Section 1 expands on the introduction, 
Section 2 explores the literature survey, Section 3 
details the database, Section 4 outlines basic 
concepts and methodology, and Sections 5 and 6, 
respectively, showcase the results and conclude 
the study. 
Flower image classification has witnessed 
substantial advancements by integrating deep 
learning methodologies. Numerous studies have 
highlighted the importance of Convolutional 
Neural Networks (CNNs), utilizing various 
models like MobileNet, DenseNet, Xception, 
Inception, ResNet, AlexNet, and VGG16.  
In the context of these studies, the research (Ari 
Peryanto et al., 2022) delves into a comparative 
analysis between Convolutional Neural Networks 
(CNN) and Support Vector Machine (SVM) in 
image classification. It distinguishes CNN as a 
deep neural network approach and SVM as a 
machine learning algorithm, setting the stage for 
their comparison. The summary of findings 
highlights CNN’s superiority over SVM in 
classifying flower images, boasting an impressive 
accuracy, precision, recall, and F1 Score of 91.6%. 
Additionally, the study details the CNN modeling 
process, emphasizing incremental enhancements 
in accuracy and loss across epochs while 
addressing concerns related to overfitting. 
This research study (Burhan Duman et al., 2022) 
involves flower species detection, leveraging 
various deep learning models, specifically 
MobileNet, DenseNet, Inception, and ResNet. 
Thus, two datasets were employed, i.e., the 5-class 
Flower Dataset and the 17-class Oxford-17 
Dataset. These models were usable via Python 
and TensorFlow2 on Kaggle and Google Colab 
platforms. A comparative performance 
assessment appeared while focusing on different 
optimizers, i.e., Adam and SGD, across various 
training epochs. The outcomes illuminated the 
variability in performance based on the chosen 
deep learning model, the optimizer, and the 
dataset size. For instance, the Adam optimizer 
generally outperformed the SGD in both datasets. 
Interestingly, several models like Mobilenet-v2, 
Resnet152v2, Inceptionv3, and DenseNet169 
exhibited similar accuracy when comparing the 
datasets. However, InceptionResnetv2 displayed 
relatively lower accuracy for the 17-class dataset 
than the 5-class dataset. Conclusively, the number 
of classes (5 vs. 17) didn't dramatically influence 
model accuracy across optimizers. Future 
research might extend this investigation by 
incorporating larger datasets like Oxford-102 and 
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experimenting with other deep-learning models 
and optimizers. 
In this study (Zhao Jiantao et al., 1994), 
Convolutional Neural Networks (CNNs) were 
harnessed to classify flower images obtained 
through mobile devices, addressing the inherent 
complexities of natural conditions, including 
background interference and the intricate 
variability among different flower types. The 
research emphasized the pivotal role of selecting 
an optimal learning rate during the training 
process, as it significantly influences the 
convergence and efficiency of the neural network. 
Finding the right balance in the learning rate is 
crucial, as setting it too low can lead to slow 
convergence while setting it too high risks 
overshooting the optimal solution. Furthermore, 
researchers can overcome overfitting challenges 
via data augmentation as a preventive strategy. 
However, the study noted that fluctuations in 
accuracy and loss could occur during training, 
particularly when maintaining a constant batch 
size. These fluctuations emanated from the 
introduction of variations through data 
augmentation. The problem-solving key involved 
adjusting batch sizes to accommodate the 
increased data volume after augmentation. In 
summary, this study demonstrated the 
effectiveness of CNNs in improving flower image 
classification accuracy, offering valuable insights 
into the importance of learning rates and the 
benefits of data augmentation for addressing 
overfitting in limited and diverse datasets. 
This study focused on flower recognition using 
Deep Convolutional Neural Networks with a 
transfer learning approach. Two popular CNN 
models, AlexNet and VGG16, were employed and 
evaluated on a benchmark Kaggle dataset. The 
results demonstrated the effectiveness of CNNs in 
object recognition, with VGG16 outperforming 
AlexNet, achieving an accuracy of 95.02%. 
Notably, VGG16 excelled in recognizing distinct 
species, while it showed moderate performance 
for flowers with inter-class similarity and intra-
class variability. The study suggested the 
potential application of this model in recognizing 
wildflowers in National Parks, and further 
improvements can address challenges related to 
intra-class differences and inter-class similarities 
in flower photos, possibly involving more 
advanced algorithms and deep learning expertise. 
In essence, this research highlighted the 
successful application of CNNs for flower 
recognition, showcasing VGG16 as a promising 
model, especially for distinct flower species, with 
implications for preserving and cataloging floral 
diversity in natural ecosystems like National 
Parks (Mastura Hanafiah et al., 2022). 

This study presents a deep learning approach for 
classifying various flowers using the Visual 
Geometry Group’s 102-category flower dataset, 
consisting of 8,189 images across 102 categories. 
The method involves two main stages: image 
segmentation and classification. Two popular 
Convolutional Neural Network (CNN) 
architectures, GoogleNet and AlexNet, were 
compared for classification performance. With 
identical hyperparameters for both models, 
GoogleNet demonstrated superior results, 
achieving Top-1 and Top-5 accuracies of 47.15% 
and 69.17%, respectively, compared to AlexNet’s 
43.39% and 68.68%. These results significantly 
outperformed random classification accuracy, 
demonstrating the potential of this method for 
real-time flower classification applications.  
Furthermore, the study highlights that deeper 
networks can yield better performance and 
regularization, particularly on large datasets. It 
also underscores the effectiveness of GoogleNet’s 
Inception module, which reduces parameters 
without sacrificing model accuracy (Ayesha 
Gurnani et al., 2017). 
In this study (Hiary H et al., 2018), a novel two-
step deep learning approach was developed for 
accurate flower classification, overcoming the 
challenges posed by the wide variety of flower 
species with similar shapes and appearances. The 
first step involved automated flower region 
segmentation using a fully convolutional network 
(FCN). This step ensued in creating a robust 
convolutional neural network (CNN) classifier for 
flower type differentiation. Notably, the proposed 
method achieved classification results exceeding 
97% accuracy on three well-known flower 
datasets, outperforming state-of-the-art 
approaches in this domain. Some essential 
contributions to obtaining success in this method 
included CNNs for feature learning, localized 
flower region detection, and the transfer of 
weights from pre-trained models. Also, more 
introductions included gradual CNN learning, 
optimized weight convergence, and a data 
augmentation step to enhance robustness and 
accuracy. This work demonstrates the best flower 
classification accuracy to date and suggests the 
potential application of this approach in other 
image-related tasks facing similar challenges. 
In this study (Yeqi Fei et al., 2023), a highly 
efficient and accurate classification model for 
fresh-cut flowers was developed, addressing 
critical factors such as classification speed and 
accuracy, which are crucial for quality control and 
pricing in the fresh-cut flower industry. The 
researchers collected RGB images and depth 
information data for rose flowers and designed a 
robust data augmentation strategy to overcome 
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limited sample size constraints. They established 
a novel architecture based on the ShuffleNet V2 
network backbone, performed transfer learning, 
and incorporated an attention mechanism to 
classify flowers of five specifications. The results 
were impressive, with classification accuracies 
exceeding 97% on all datasets and a rapid overall 
prediction speed of 0.020 seconds per flower. 
Compared to existing flower classification 
methods, this approach demonstrated significant 
advantages regarding parameter efficiency, 
classification speed, and accuracy. It holds great 
promise for developing fresh-cut flower 
classification and grading systems, offering the 
potential to enhance efficiency and maintain 
flower quality throughout the classification 
process. 
Previous Research (Musa Cıbuk et al., 2019) 
addresses flower species classification using deep 
convolutional neural networks (DCNNs) for 
digital flower catalogs. It employs pre-trained 
AlexNet and VGG16 models for feature extraction, 
combining their features for efficiency. A feature 
selection method, mRMR, refines these features. 
The extracted features are then classified using an 

SVM with an RBF kernel. Flower17 and 
Flower102 datasets in place achieved accuracies 
of 96.39% and 95.70%, respectively. Despite its 
simplicity, the method proves highly effective, 
showcasing the potential of this DCNN-based 
hybrid approach for accurate flower species 
classification in image-based tasks. 
 

Dataset overview 
In our study, the dataset with five distinct flower 
classes emanated from the Kaggle repository 
(Kannan K, 2023): Lilly, lotus, sunflower, orchid, 
and tulip, each class comprising 1000 images. 
These images were curated to facilitate a multi-
class classification approach for accurately 
classifying flowers within these five categories. 
We randomly allocated 20% of the images and 
designated 10% for testing and validation. The 
remaining ones were for training. Figure 1 depicts 
some samples of images from the dataset  
(Database: 
https://www.kaggle.com/datasets/kausthubkan
nan/5-flower-types-classification-dataset). 
 

 
 

   

Sunflower Orchid Tulip 

 

  

Lilly Lotus 

Fig. 1. Sample images from the dataset.  

 
Basic Theory 
Basics 
VGG16  
VGG16 belonged to the Visual Geometry Group 
(VGG) deep learning architecture series. The 

architecture of VGG16 appears in Figure 2. Its 
source was the University of Oxford and 
comprises 16 layers, blending 3 x 3 convolutional 
filters and strategically positioned pooling layers. 
VGG16 begins with an input layer tailored for 224 
x 224 RGB images. It embraces 13 convolutional 

https://www.kaggle.com/datasets/kausthubkannan/5-flower-types-classification-dataset
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layers, each using a 3 x 3 kernel, followed by ReLU 
activation functions. Five max-pooling layers 
systematically reduce spatial dimensions while 
preserving critical information. This architecture 
transforms from image analysis to feature 
extraction. Its hierarchical feature learning is the 
key to its adaptability. VGG16 excels in tasks 
beyond image classification, including content-
based image retrieval and object localization. For 
classification, it deploys three fully connected 
layers. The initial two layers have 4096 channels 
with ReLU activations. The final layer produces a 
1000-dimensional output vector, aligning with 
ImageNet’s 1000 classes, culminating in a 

softmax activation for class probabilities. Dropout 
regularization became necessary to combat 
overfitting after the first two fully connected 
layers. This randomness guards against 
overreliance on specific neurons, enhancing the 
network’s robustness to real-world data. VGG16’s 
elegance and hierarchical feature learning make it 
a potent tool for diverse applications. In its 
simplicity, we witness the power of deep neural 
networks, unraveling the complexities of the 
visual world (Karen Simonyan, 2014; Mesut 
Toğaçar, 2020). 
 

 

 

Fig. 2. VGG16 architecture (Vigneashwara Pandiyan et al., 2019). 

 
Xception  
Xception (Extreme Inception) reimagines 
convolutional networks by taking cues from the 
initial Inception principles and refining them to 
create an even more powerful architecture (Fig. 
3). Typically designed to handle inputs of size 299 
x 299 for RGB images, Xception commences with 
a set of regular convolutional layers to initially 
pre-process the image. However, the heart and 
soul of this model lie in its recurrent ‘middle flow,’ 
repeated eight times in the architecture. This flow 
is a distinctive construct that pivots around the 
concept of depth-wise separable convolutions. 
Here, spatial and channel-wise features are 
learned separately. Thus, we effectively capture 
details with fewer parameters. A batch 
normalization technique has associations with 
each depth-wise operation, ensuring stable 
activations, which subsequently pass through the 
ReLU activation function, introducing non-
linearity and enhancing the model’s 
expressiveness. This innovative decoupling of 
spatial and channel-wise learning results in 
greater computational efficiency and empowers 
the Xception model to set new performance 
benchmarks across several image-centric tasks 
(Francois Chollet, 2017). 

 

Methodology 
Transfer learning  
Transfer learning in machine learning involves 
repurposing knowledge from solving one task to 
improve learning efficiency and performance on a 
different, related task. Utilizing pre-trained 
models-neural networks trained on extensive 
datasets like ImageNet-transfer learning 
leverages their learned features for new tasks. 
While freezing early layers that capture generic 
features and fine-tuning later layers to adapt to 
new data, transfer learning reduces training time 
and enhances performance. This technique 
benefits from domain similarity between the 
original and new tasks, focusing on reusing 
representations to generalize across different 
datasets. It excels in scenarios with limited 
labeled data for the new task, offering improved 
results and robustness. Transfer learning’s 
essence lies in leveraging existing knowledge, 
enabling quicker adaptation to new tasks, and 
contributing to enhanced model performance by 
utilizing learned features from related domains 
(Fuzhen Zhuang, 2020; Arun Singh, 2022). This 
study involves the design of Transfer Learning 
models based on VGG16 and Xception, both with 
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and without dropout. The methodology 
(Algorithm 1) illustrates the implementation 
process. 
Algorithm-1: VGG16 / Xception-based Transfer 
Learning. 
Input: Imagedatasets (Training, Validation, 
Testing), Num_classes: Number of classes.  
Output: Classification results, model performance 
metrics. 
Step 1: Import necessary libraries, including 
TensorFlow and Keras, define the num_classes, 
and load the pre-trained VGG16 or Xception 
model. 
Step 2: Freeze Pre-Trained Model Layers. 
Step 3: Build Model Architecture: 
Create a new Sequential model 
Add the pre-trained VGG16 base model 
Add a Flatten layer to flatten the extracted 
features 

Add a Dense layer with ReLU activation (512 
units) to capture complex patterns 
Add a Dropout layer to prevent overfitting 
(dropout rate of 0.5) 
Add a final Dense output layer with softmax 
activation for class probabilities. and Dropout 
layer to prevent overfitting 
Step 4: Compile the Model with data 
augmentation techniques and Adam optimizer 
with different learning rate. 
Step 5:  Generate Training and Validation Data the 
model. 
Step 6: Evaluate the pertained model on Testing 
Data. Obtain test loss and test accuracy as 
evaluation metrics. 
Step 7: Calculate the confusion matrix using true 
and predicted classes. 
Step 8: Stop. 

 

 

Fig. 3.  Xception architecture (Francois Chollet, 2017). 

 

Proposed hybrid model  
In this study, we leverage the prowess of pre-
trained models, notably VGG16 and Xception, to 
comprehend and characterize the hierarchical 
feature spaces of flower images (Fig. 4). Initially, 
we harness TensorFlow, a versatile deep learning 
framework, to streamline the modeling process. 
VGG16 has deep architecture, primarily 
characterized by 3 x 3 convolutional filters. It 
commences with an input RGB images, followed 
by a sequence of convolutional layers. Each 
convolutional layer employs a 3 x 3 filter with a 
stride of 1 to preserve spatial resolution and 
ensure that every pixel in the input contributes to 
the output. It leads to a Rectified Linear Unit 
(ReLU) activation function. As these convolution 
operations unfold, hierarchical features emerge, 
with initial layers typically capturing basic 

patterns and textures such as edges and blobs, 
and deeper layers can extract more intricate 
features, representing object parts or even entire 
objects. 
 
The architecture of VGG16 arranges its features 
by layer depth, organized into blocks where each 
block includes a sequence of convolutional layers 
followed by a subsequent max-pooling layer. The 
spatial dimensions can decrease due to pooling 
operations as the network delves deeper. The 
depth increases, signifying the representation of 
more complex features. 
The Xception model rethinks the convolution 
operation by using depthwise separable 
convolutions. Instead of performing standard 
convolutions, it breaks the operation into 
depthwise and pointwise operations. Initially, it 
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uses standard convolutional layers, but the core of 
the model consists of its 'middle flow,' repeated 
eight times. In this middle flow, spatial features 
and channel-wise features are learned separately, 
enabling efficient and detailed feature extraction. 
The Xception model organizes its features using 

blocks. The middle flows, comprising blocks of 
depthwise separable convolutions, are the heart 
of this architecture, grouping features based on 
the depth of their extraction and the type of 
convolution used.

 

Fig. 4. Proposed hybrid model. 

 
These individual features are maps from each 
model. They converge into a unified feature space. 
This amalgamation ensures that the most salient 
and distinguishing characteristics per model 
interpretation come together. This consolidated 
feature space, rich with information and shades 
from both models, is subsequently channeled 
through a sequence of dense layers in the hybrid 
model. These dense layers are responsible for 
introducing deeper non-linear transformations to 
the combined features, thus refining and 
preparing them for an effective classification. The 
combined feature set passes through a dense 
layer with a ReLU activation. Within this layer, the 
features undergo transformations that empower 
the model and better discern intricate patterns 
and relationships among classes. 
The final step in this intricate process is the 
classification layer for interpreting the 
transformed features and assigning them to 
predefined classes. However, the raw outputs 
from this layer may not be immediately 
interpretable, as they may not sum up to one or 
may have varying magnitudes. These outputs 
become interpretable and provide a clear ranking 
of class probabilities, thus passing through a 
softmax activation function. This function ensures 
that the output values are normalized and sum up 
to one, making them directly representable as 
probabilities. This approach leverages diverse 
feature extraction capabilities per architecture, 
potentially leading to more comprehensive 
representations and enhanced classification 
accuracy. 
The hybrid model emanates from the Adam 

optimizer and categorical cross-entropy loss, 
with periodic validation to monitor its 
performance. Post-training, the model’s efficacy is 
tested on a separate dataset. Algorithm 2 
illustrates the implementation process and the 
proposed hybrid flower image classification. 
Algorithm 2: Proposed hybrid flower image 
classification  
Input: Image datasets (Training, Validation, 
Testing), Num_classes: Number of classes.  
Output: Classification results, model performance 
metrics. 
Step 1: Load VGG16 and Xception with ImageNet 
weights. 
Step 2:  Freeze layers of each model to retain pre-
trained weights. 
Step 3:  Define a common input layer for image 
dimensions (128, 128, 3). 
Step 4:  Extract features. 
Step 4.1: Pass image through VGG16; store the 
output as ‘vgg16_features’ 
Step 4.2: Pass image through Xception; store the 
output as ‘xception_features’ 
Step 5: Concatenate- ‘vgg16_features’ and 
‘xception_features’. 
Step 6: Add subsequent layers for classification: 
Dense layer with ReLU activation 
Dropout layer  
Output layer with softmax activation for 
classification 
Step 7: Compile the hybrid model using: 
Optimizer: Adam 
Loss: Categorical Cross-Entropy 
Metrics: Accuracy 
Step 8:  Initialize-‘ImageDataGenerator` such as 
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rescale = 1.0/255, rotation_range = 40,  
              zoom_range = 0.2, horizontal_flip = True, 
fill_mode = 'nearest. 
Step 9: Define data generators for: 
Training data 
Validation data 
Testing data 
Step 10: Train the hybrid model using the training 
data, and validate using the validation data. 
Step 11: Evaluate the model’s performance on the 
testing data. 
Step 12: Generate and display: 
Confusion matrix 
Classification report 
Training - validation loss over epochs 
Training - validation accuracy over epochs 
Step 13: End. 
 

Results and Discussion 
The endeavor to achieve robust and accurate 
flower classification through deep learning 
models has witnessed substantial advancements 
in recent years. This study delves into a 
comparative analysis of various architectures, 
including Neural Network, Random Forest 
Classifier with Histogram-Based Image Features, 
and Convolutional Neural Networks (CNNs) such 
as VGG16, Xception, and hybrid models. It 
explores different configurations, epochs, 
dropout rates, early stopping techniques, and 
diverse architectures for flower classification. 
This exploration aims to establish a benchmark 
for flower classification models, unraveling 
insights into the most effective methods for 
accurate and robust flower species recognition. 
This evaluation phase generates a detailed 
classification report and confusion matrix for 
insights into class-wise performance. 
Visualization techniques, employing Matplotlib 
and Seaborn, provide graphical representations 
of training-validation loss and accuracy trends 
across epochs, and a heat-mapped confusion 
matrix showcases the model’s classification 
ability. 
Specifically, the Neural Network architecture 
employed for comparison includes an input layer 
representing flattened data, followed by a hidden 
dense layer containing 512 neurons with ReLU 
activation. The output layer consists of 5 neurons 
with softmax activation, making it suitable for 
multi-class classification tasks. Before training, 
image data undergoes preprocessing via 
rescaling. The model is then trained using the 
Adam optimizer with a learning rate of 0.001 and 
categorical cross-entropy loss. 
In contrast, the Random Forest Classifier with 
Histogram-Based Image Features consists of 100 

decision trees in this implementation, trained to 
recognize distinct flower classes by discerning 
patterns within the histogram features. Through 
analysis of pixel intensity distributions, the model 
effectively captures key visual traits of flowers, 
including color and texture, which are crucial for 
accurate classification. 
Table 1 outlines classification metrics for various 
models with different configurations of dense 
layers, dropout rates, and early stopping 
techniques. It includes data for a Neural Network 
trained over 25 epochs, resulting in a training 
accuracy of 0.74, with validation and testing 
accuracies of 0.650 and 0.603, respectively. 
Additionally, a Random Forest Classifier with 
Histogram-Based Image Features with 100 trees 
achieved a training accuracy of 0.999, with 
validation and testing accuracies of 0.592 and 
0.600, respectively. These models are compared 
to other CNN models such as VGG16, Xception 
model, and various proposed hybrid models, each 
featuring different configurations of dense layers, 
dropout rates, and early stopping techniques. The 
VGG16 model without dropout displays 
impressive training accuracy at 96.67%, 
outperforming the 88.80% testing accuracy, yet 
with a slight drop in generalization from 
validation (90.10%) to testing, indicating 
potential minor overfitting tendencies but still 
showcasing robust recognition of various flower 
species. Conversely, the VGG16 model with 0.5 
dropout presents lower training accuracy at 
83.94%, with validation accuracy close at 89.20%, 
suggesting that dropout could limit learning 
complex patterns, affecting performance on 
unseen data. Whereas the Xception without 
dropout maintains consistency across training 
(96.57%), validation (90.50%), and testing 
(89.39%) accuracies, demonstrating strong 
generalization capabilities. Conversely, the 
Xception model with 0.5 dropouts maintains 
robustness in generalization despite a training 
accuracy drop of 83.09%, holding steady 
validation (90.30%) and testing (89.80%) 
accuracies compared to its non-dropout variant. 
In the hybrid models, those with no dropout 
exhibit compelling performance, with higher 
training accuracies (94.97% to 97.23%) closely 
aligned with validation (86.50% to 90.90%) and 
testing (89.99% to 91.20%) accuracies, 
showcasing robust learning and generalization. 
However, the introduction of dropout (0.5) in 
these models leads to a marginal decrease in 
performance, with slightly lower accuracy 
(86.59% to 90.10%) compared to their non-
dropout counterparts, potentially hindering 
higher accuracy. 
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Table 1. Comparison of model performance for flower image classification. 

Sl. 

No. 
Model Epochs 

Training 

Loss 

Training 

Accuracy 

Validation 

Loss 

Validation 

Accuracy 
Test Loss 

Test 

Accuracy 

1.  Neural Network 25 0.8454 0.74 1.08 0.650 1.12 0.603 

2.  

Random Forest Classifier 

with Histogram-Based 

Image Features 

No. of 

trees = 

100 

- 0.999 - 0.592 - 0.6 

3.  VGG16 with no dropout 25 0.0933 0.9667 0.3754 0.9010 0.4831 0.8880 

4.  VGG16 with 0.5 dropout 25 0.4146 0.8394 0.3635 0.8920 0.4265 0.8619 

5.  Xception with no dropout 25 0.1100 0.9657 0.3934 0.9050 0.4093 0.8939 

6.  Xception with 0.5 dropout 25 0.4513 0.8309 0.3394 0.9030 0.339 0.898 

7.  

Proposed hybrid model 

with  512 dense layer, early 

stopping and no dropout 

12 0.1582 0.9497 0.4418 0.8650 0.3311 0.8999 

8.  

Proposed hybrid model 

with 512 dense layer, 0.5 

dropout and early stopping 

21 0.4374 0.8420 0.3194 0.8920 0.3609 0.8659 

9.  

Proposed hybrid model 

with 512 dense layer, 0.25 

dropout and early stopping 

22 0.2118 0.9234 0.3457 0.9050 0.2999 0.8939 

10.  

Proposed hybrid model for 

25 epochs with 512 dense 

layers  and no dropout 

25 0.1280 0.9549 0.3853 0.9070 0.4333 0.9120 

11.  

Proposed hybrid model for 

25 epochs with 512 dense 

layers  and 0.5 dropout 

25 0.4252 0.8480 0.3108 0.9030 0.3062 0.8920 

12.  

Proposed hybrid model for 

25 epochs with 256 dense 

layers and no dropout 

25 0.0748 0.9723 0.2787 0.9090 0.3594 0.9020 

13.  

Proposed hybrid model for 

25 epochs with 256 dense 

layers and 0.5 dropout 

25 0.1660 0.9386 0.2568 0.9090 0.2931 0.9100 

 
The training accuracy metric evaluates the 
model’s proficiency in fitting the training data, an 
indicator of the model’s learning capacity and 
potential overfitting tendencies. The Random 
Forest Classifier with Histogram-Based Image 
Features achieved the highest training accuracy of 
99.9%. Subsequently, the proposed hybrid model 
trained for 25 epochs with 256 dense layers and 
no dropout exhibited the highest training 
accuracy at 97.23%, suggesting robust learning 
capabilities and effective representation learning. 
In contrast, the Neural Network and CNN models, 

excluding the Neural Network itself, such as 
VGG16 and Xception with a dropout rate of 0.5, 
exhibited comparatively lower training accuracy, 
indicating potential challenges in capturing 
complex patterns within the dataset. 
Validation accuracy is a crucial metric that 
measures a model’s ability to generalize well on 
unseen data. The proposed hybrid model, trained 
for 25 epochs with 512 dense layers and no 
dropout, attained the highest validation accuracy 
of 90.70%, indicating its strong generalization 
performance. Conversely, the Random Forest 
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Classifier with Histogram-Based Image Features 
achieved the lowest validation accuracy of 59.2%. 
Additionally, the hybrid model with 512 dense 
layers, utilizing early stopping with no dropout, 
exhibited a slightly lower validation accuracy of 
90.10%, implying possible limitations in its 
ability to generalize compared to the top-
performing model. 
The testing accuracy metric provides insights into 
a model’s real-world applicability and 
performance on completely unseen data. The 
proposed hybrid model, trained for 25 epochs 
with 512 dense layers and no dropout, exhibited 
the highest testing accuracy at 91.20%, signifying 

its robustness in making accurate predictions on 
new instances. Conversely, the Neural Network 
exhibited the lowest testing accuracy of 60%, and 
VGG16 had 0.5 dropouts and yielded the lowest 
testing accuracy of 86.19% among the CNN 
models, indicating potential challenges in 
generalization and performance on new, unseen 
flower images. 
Tables 2-7 provide compression of accuracy and 
loss of proposed models. Figures 5-17 represent 
graphs of loss and accuracy for training and 
validation, along with confusion matrices of the 
different proposed models. 
 

 
Table 2. Classification metrics for neural network and random forest classifier with histogram-based image features. 

Neural 

Network 

precision    

rate 

recall  

rate 

f1-sco

re 
support 

 

 

 

 

 

 

 

 

 

Random 

Forest 

Classifier 

with 

Histogram- 

Based 

Image 

Features 

dropout 

precision    

rate 

recall  ra

te 
f1-score support 

Lilly 0.65 0.31 0.42 100  Lilly 0.54 0.64 0.58 100 

Lotus 0.65 0.58 0.61 100  Lotus 0.65 0.62 0.64 100 

Orchid 0.49 0.71 0.58 100  Orchid 0.58 0.52 0.55 100 

Sunflower 0.68 0.88 0.77 100  Sunflower 0.65 0.67 0.66 100 

Tupil 0.62 0.54 0.58 100  Tupil 0.59 0.55 0.57 100 

accuracy   0.60 500  accuracy   0.60 500 

macro avg 0.62 0.60 0.59 500  macro avg 0.60 0.60 0.60 500 

weighted avg 0.62 0.60 0.59 500 
av

g 

weighted 

 

0.60 0.60 0.60 500 

Table 3. Classification metrics for VGG16 with no dropout and VGG16 with 0.5 dropout. 

VGG16 with 

no dropout 

precision    

rate 

recall  

rate 

f1-scor

e 
support  

VGG16 with 

0.5 dropout 

precision    

rate 

recall  

rate 

f1-scor

e 
support 

Lilly 0.87 0.76 0.81 100  Lilly 0.85 0.72 0.78 100 

Lotus 0.76 0.90 0.83 100  Lotus 0.75 0.83 0.79 100 

Orchid 0.98 0.90 0.94 100  Orchid 0.97 0.91 0.94 100 

Sunflower 0.88 0.99 0.93 100  Sunflower 0.91 0.97 0.94 100 

Tupil 0.98 0.89 0.93 100  Tupil 0.85 0.88 0.86 100 

accuracy   0.89 500  accuracy   0.86 500 

macro avg 0.90 0.89 0.89 500  macro avg 0.86 0.86 0.86 500 

weighted avg 0.90 0.89 0.89 500  weighted avg 0.86 0.86 0.86 500 
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Table 4. Classification metrics for Xception with no dropout and Xception with 0.5 dropout. 

Xception 

with no 

dropout 

precision    

rate 

recall  

rate 

f1-scor

e 
support  

Xception 

with 0.5 

dropout 

precision    

rate 

recall  

rate 

f1-scor

e 
support 

Lilly 0.85 0.80 0.82 100  Lilly 0.89 0.70 0.78 100 

Lotus 0.82 0.93 0.87 100  Lotus 0.79 0.94 0.86 100 

Orchid 0.91 0.91 0.91 100  Orchid 0.94 0.95 0.95 100 

Sunflower 0.95 0.97 0.96 100  Sunflower 0.96 1.00 0.98 100 

Tupil 0.95 0.86 0.90 100  Tupil 0.93 0.90 0.91 100 

accuracy   0.89 500  accuracy   0.90 500 

macro avg 0.90 0.89 0.89 500  macro avg 0.90 0.90 0.90 500 

weighted avg 0.90 0.89 0.89 500  weighted avg 0.90 0.90 0.90 500 

 

Table 5. Classification metrics for proposed hybrid model with 512 dense layers, early stopping and no dropout, as 
well as for the proposed hybrid model with 512 dense layer, 0.5 dropout and early stopping. 

Proposed 

hybrid model 

with  512 

dense layer, 

early 

stopping and 

no dropout 

precision    

rate 

recall  

rate 

f1-scor

e 
support  

Proposed 

hybrid model 

with 512 

dense layer, 

0.5 dropout 

and early 

stopping 

precision    

rate 

recall  

rate 

f1-scor

e 
support 

Lilly 0.85 0.73 0.78 100  Lilly 0.83 0.69 0.75 100 

Lotus 0.83 0.92 0.87 100  Lotus 0.74 0.92 0.82 100 

Orchid 0.92 0.95 0.94 100  Orchid 0.88 0.92 

.. 

0.90 100 

Sunflower 0.98 0.98 0.98 100  Sunflower 0.97 0.96 0.96 100 

Tupil 0.92 0.92 0.92 100  Tupil 0.94 0.84 0.89 100 

accuracy   0.90 500  accuracy   0.87 500 

macro avg 0.90 0.90 0.90 500  macro avg 0.87 0.87 0.87 500 

weighted avg 0.90 0.90 0.90 500  weighted avg 0.87 0.87 0.87 500 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



H K et al.,                                               Int. J. Hort. Sci. Technol. 2025 12 (3): 323-342 

334 

Table 6. Classification metrics for proposed hybrid model with 512 dense layer, 0.25 dropout and early stopping, as 
well as for the proposed hybrid model for 25 epochs with 512 dense layers and no dropout. 

Proposed 

hybrid model 

with 512 

dense layer, 

0.25 dropout 

and early 

stopping 

precision    

rate 

recall  

rate 

f1-scor

e 
support  

Proposed 

hybrid model 

for 25 epochs 

with 512 

dense layers  

and no 

dropout 

precision    

rate 

recall  

rate 

f1-scor

e 
support 

Lilly 0.83 0.76 0.79 100  Lilly 0.85 0.81 0.83 100 

Lotus 0.85 0.88 0.86 

. 

100  Lotus 0.83 0.92 0.87 100 

Orchid 0.93 0.96 0.95 100  Orchid 1.00 0.95 0.97 100 

Sunflower 0.92 1.00 0.96 100  Sunflower 0.96 0.94 0.95 100 

Tupil 0.95 0.87 0.91 100  Tupil 0.93 0.94 0.94 100 

accuracy   0.89 500  accuracy   0.91 500 

macro avg 0.89 0.89 0.89 500  macro avg 0.91 0.91 0.91 500 

weighted avg 0.89 0.89 0.89 500  weighted avg 0.91 
0.91 

 
0.91 500 

 

Table 7. Classification metrics for proposed hybrid model for 25 epochs with 256 dense layers and no dropout and 
early stopping, as well as for the proposed hybrid model for 25 epochs with 256 dense layers and 0.5 dropout. 

Proposed 

hybrid model 

for 25 epochs 

with 512 dense 

layers  and 0.5 

dropout 

precision    

rate 

recall  

rate 
f1-score support  

Proposed 

hybrid model 

for 25 epochs 

with 256 

dense layers 

and no 

dropout 

precision    

rate 

recall  

rate 
f1-score support 

Lilly 0.84 0.70 0.77 100  Lilly 0.91 0.69 0.78 100 

Lotus 0.78 0.92 0.84 100  Lotus 0.83 0.90 0.87 100 

Orchid 0.96 0.95 0.95 100  Orchid 0.90 0.96 0.93 100 

Sunflower 0.96 1.00 0.98 100  Sunflower 0.95 0.99 0.97 100 

Tupil 0.93 0.89 0.91 100  Tupil 0.92 0.97 

97 

0.95 100 

accuracy   0.89 500  accuracy   0.90 500 

macro avg 0.89 0.89 0.89 500  macro avg 0.90 0.90 0.90 500 

weighted avg 0.89 0.89 0.89 500  weighted avg 0.90 0.90 0.90 500 
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a b c 

Fig. 5. Performance evaluation of classification using neural network (a) confusion matrix for classification using 
neural network based classification, (b) Training-validation loss for classification using neural network based 
classification and (c) Training-validation accuracy for classification using neural network based classification. 

 

  

a b 

Fig. 6. Performance evaluation of classification using random forest classifier with histogram-based image (a) 
confusion matrix for classification using random forest classifier with histogram-based image and (b) training-

validation accuracy for classification using random forest classifier with histogram-based image. 
 

   

a b c 

Fig. 7. Performance evaluation of classification using VGG16 with no dropout (a) confusion matrix for classification 
using VGG16 with no dropout, (b) training-validation loss for classification using VGG16 with no dropout and (c) 

training-validation accuracy for classification using VGG16 with no dropout. 
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a b c 

Fig. 8. Performance evaluation of classification using VGG16 with 0.5 dropout (a) confusion matrix for classification 
using VGG16 with 0.5 dropout, (b) training-validation loss for classification using VGG16 with 0.5 dropout and (c) 

training-validation accuracy for classification using VGG16 with 0.5 dropout. 
 

 

 
  

a b c 

Fig. 9. Performance evaluation of classification using Xception with no dropout (a) confusion matrix, for classification 
using Xception with no dropout (b) training-validation loss for classification using Xception with no dropout and (c) 

training-validation accuracy for classification using Xception with no dropout. 
 

 

 
 

 

a b c 

Fig. 10. Performance evaluation of classification using Xception with 0.5 dropout (a) confusion matrix for classification 
using Xception with 0.5 dropout, (b) training-validation loss for classification using Xception with 0.5 dropout and (c) 

training-validation accuracy for classification using Xception with 0.5 dropout. 
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a b c 

Fig. 11. Performance evaluation of classification using the proposed hybrid model that includes a 512 dense layers  
with early stopping and no dropout (a) confusion matrix for classification using the proposed hybrid model that 

includes a 512 dense layers  with early stopping and no dropout, (b) training-validation loss for classification using 
the proposed hybrid model that includes a 512 dense layers  with early stopping and no dropout and (c) training-
validation accuracy for classification using the proposed hybrid model that includes a 512 dense layers  with early 

stopping and no dropout. 

 

 
 

 

a b c 

Fig. 12. Performance evaluation of classification using the proposed hybrid model that includes a 512 dense layers  
with 0.5 dropout and early stopping (a) confusion matrix for classification using the proposed hybrid model that 

includes a 512 dense layers  with 0.5 dropout and early stopping, (b) training-validation loss for classification using 
the proposed hybrid model that includes a 512 dense layers  with 0.5 dropout and early stopping and (c) training-
validation accuracy for classification using the proposed hybrid model that includes a 512 dense layers  with 0.5 

dropout and early stopping. 
 

 
 

 

a b c 

Fig. 13. Performance evaluation of classification using the proposed hybrid model that includes a 512 dense layers 
with 0.25 dropout and early stopping (a) confusion matrix for classification using the proposed hybrid model that 

includes a 512 dense layers with 0.25 dropout and early stopping, (b) training-validation loss for classification using 
the proposed hybrid model that includes a 512 dense layers with 0.25 dropout and early stopping and (c) training-



H K et al.,                                               Int. J. Hort. Sci. Technol. 2025 12 (3): 323-342 

338 

validation accuracy for classification using the proposed hybrid model that includes a 512 dense layers with 0.25 
dropout and early stopping. 

 

 

 

a b c 

Fig. 14. Performance evaluation of classification using the proposed hybrid model for 25 epochs with 512 dense layers 
and no dropout (a) confusion matrix for classification using the proposed hybrid model for 25 epochs with 512 dense 

layers and no dropout, (b) training-validation loss for classification using the proposed hybrid model for 25 epochs 
with 512 dense layers and no dropout, and (c) training-validation accuracy for classification using the proposed 

hybrid model for 25 epochs with 512 dense layers and no dropout. 

 

 

 
 

a b c 

Fig. 15. Performance evaluation of classification using the proposed hybrid model for 25 epochs with 512 dense layers 
and no dropout (a) confusion matrix for classification using the proposed hybrid model for 25 epochs with 512 dense 

layers and no dropout, (b) training-validation loss for classification using the proposed hybrid model for 25 epochs 
with 512 dense layers and no dropout, and (c) training-validation accuracy for classification using the proposed 

hybrid model for 25 epochs with 512 dense layers and no dropout. 
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a b c 

Fig. 16. Performance evaluation of classification using the proposed hybrid model for 25 epochs with 256 dense layers 
and no dropout (a) confusion matrix for classification using the proposed hybrid model for 25 epochs with 256 dense 

layers and no dropout, (b) training-validation loss for classification using the proposed hybrid model for 25 epochs 
with 256 dense layers and no dropout, and (c) training-validation accuracy for classification using the proposed 

hybrid model for 25 epochs with 256 dense layers and no dropout. 

 

 
  

a b c 

Fig. 17. Performance evaluation of classification using the proposed hybrid model for 25 epochs with 256 dense layers 
and 0.5 dropout (a) confusion matrix for classification using the proposed hybrid model for 25 epochs with 256 dense 

layers and 0.5 dropout, (b) training-validation loss for classification using the proposed hybrid model for 25 epochs 
with 256 dense layers and 0.5 dropout and (c) training-validation accuracy for classification using the proposed 

hybrid model for 25 epochs with 256 dense layers and 0.5 dropout. 

 
 
Precision, recall, and F1-score are critical metrics, 
especially in multiclass classification tasks, which 
enable assessments of the model’s ability to 
classify each case correctly and avoid 
misclassifications. Comparing VGG16 models, 
VGG16 with no dropout displayed marginally 
higher precision and recall rates across different 
flower categories compared to VGG16 with 0.5 
dropout. This suggests that the absence of 
dropout layers might contribute to slightly better 
classification performance for this architecture. 
Analyzing Xception models, Xception with no 
dropout consistently outperformed Xception with 
0.5 dropouts, showcasing higher precision, recall, 
and F1 scores across various flower classes. This 
emphasizes the impact of dropout layers on the 
model’s ability to identify flower types accurately. 

Evaluating the proposed hybrid models, without 
dropout layers, exhibited slightly better or at least 
comparable precision, recall, and F1 scores than 
their counterparts with dropouts. This suggests 
that dropout layers might not significantly 
contribute to the overall performance of these 
hybrid architectures for flower classification. 
Following a comprehensive assessment of 
training accuracy, validation accuracy, testing 
accuracy, as well as precision, recall, and F1 scores 
across multiple models, the proposed hybrid 
model for 25 epochs with 512 dense layers and no 
dropout emerges as the most effective model for 
flower classification. This model consistently 
demonstrates superior performance across 
various evaluation metrics, indicating its 
robustness, high accuracy, and reliable 
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classification capabilities across different flower 
categories. Table 8 presents the classification 
metrics for the proposed hybrid model over 25 

epochs with 512 dense layers and 0.5 dropouts. 

 

 
Table 8. Classification metrics for the proposed hybrid model for 25 epochs with 512 dense layers and no dropout. 

Proposed hybrid model for 25 epochs with 512 dense 

layers  and no dropout 

precision    

rate 

recall  

rate 
f1-score support 

Lilly 0.90 0.78 0.83 100 

Lotus 0.85 0.88 0.86 100 

Orchid 0.93 0.95 0.94 100 

Sunflower 0.94 0.99 0.97 100 

Tupil 0.93 0.95 0.94 100 

accuracy   0.91 500 

macro avg 0.91 0.91 0.91 500 

weighted avg 0.91 0.91 0.91 500 

Table 9 presents a comparative analysis of flower 
classification accuracy as documented in the 
existing literature. In practical scenarios, such 

assessments serve as valuable benchmarks for 
evaluating the performance of the proposed 
classification models.

 
Table 9. Comparison of classification accuracy with the existing work. 

# Study Classes Dataset Size Method Accuracy 

1. (Peryanto, 2022) 

Aster 

Mawar (Rose) 

Tupil 

400 images in 

each class 

CNN 

SVM 

91.6% 

78.3% 

2. (Nuraini Rini, 2023) 

Cherry Rose 

Velvet Queen 

Fiesta Del Sol 

Sunny Smile 

Teddy Bear 

Early Russian 

Red Sun 

Total 350 images Multiclass SVM 79 % 

3. (Qing Lv, 2022) 

Oxford-17 dataset comprises 

17 categories of flower 

datasets, including Fritillary, 

Dandelion, Lily Valley, 

Daisy, Daffodil, Cowslip, 

Tulip, Tigerlily, Crocus, 

Bluebell, etc. 

Each category 

contains 80 

images, resulting 

in a total of 1360 

images. 

LeNet 

 

AlexNet 

 

VGGNet- 16 

58% 

 

41% 

 

72% 

4. Proposed 

Sunflower 

Orchid 

Tulip 

Lilly 

Lotus 

1000 images of 

each class 

Hybrid VGG16 and 

Xception  feature extractor 

with softmax classifier 

91. 2% 
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Thus, the field of flower classification has seen 
diverse approaches and datasets explored by 
researchers. Peryanto et al. (2022) demonstrated the 
effectiveness of CNN and SVM techniques on a 
dataset comprising three flower classes, achieving 
high accuracies. Nuraini Rini (2023) employed 
Multiclass SVM on a smaller dataset, yielding 
satisfactory accuracy. Qing Lv (2022) experimented 
with different architectures on the Oxford-17 
dataset, highlighting varying levels of accuracy 
across models. Finally, the proposed method utilized 
a hybrid approach, combining VGG16 and Xception 
feature extractors, resulting in promising 
classification performance on a dataset with five 
flower classes. These findings underscore the 
importance of selecting appropriate methods and 
datasets for flower classification tasks, with each 
approach offering its strengths and limitations. 
 

Conclusion  
In the rapidly evolving landscape of artificial 
intelligence and deep learning, the pursuit of more 
accurate and efficient classification models remains 
a paramount challenge, particularly resonant in the 
domain of flower species classification, where 
automated recognition systems hold immense 
promise for various applications, including 
agriculture, environmental monitoring, and 
botanical research. This quest culminates in a 
significant milestone in advancing the state-of-the-
art in flower species classification by leveraging the 
power of Convolutional Neural Networks (CNNs) and 
innovative hybrid models. The journey begins with 
meticulously examining various models, including 
Neural Networks, Random Forest Classifier with 
Histogram-Based Image Features, and various CNN 
models, each endowed with unique capabilities and 
nuances. These models undergo training and 
evaluation across multiple epochs to 
comprehensively gauge their performance, 
facilitated by a rich dataset comprising training loss, 
training accuracy, validation loss, validation 
accuracy, test loss, and test accuracy metrics, 
enabling a nuanced understanding of each model 
behavior across different stages of training and 
evaluation. The proposed hybrid model for 25 
epochs with 512 dense layers and no dropout 
unequivocally demonstrates unparalleled prowess, 
exhibiting a remarkable state-of-the-art 
classification accuracy of 91.20% on the Kaggle 
flower dataset. Moreover, the success of the 
proposed hybrid model highlights the potency of 
feature fusion from multiple CNNs, offering insights 
that transcend the realm of flower classification. 
Summarizing the findings, the Neural Network 
achieves a moderate classification accuracy across 
different flower species, while the Random Forest 
Classifier with Histogram-Based Image Features 
shows comparable performance but with a slightly 
lower accuracy. VGG16 with no dropout and Xception 
with no dropout exhibit high accuracy rates, 

outperforming models with dropouts. The proposed 
hybrid model with 512 dense layers and no dropout 
consistently demonstrates superior accuracy, with 
notable improvements compared to models with 
dropouts. The hybrid model with 512 dense layers 
and 0.5 dropout also performs well but slightly lower 
than its counterpart without dropout. Models with 
early stopping generally exhibit better performance 
in terms of accuracy and convergence. Across 
different configurations, the hybrid model 
consistently achieves high accuracy rates, 
showcasing the effectiveness of feature fusion from 
multiple CNNs. 
Future research could delve into experimenting with 
diverse combinations of pre-trained CNN 
architectures, probing the impact of merging 
features from various models on classification 
accuracy. This exploration could encompass 
architectures such as ResNet, Inception, or 
EfficientNet, aiming to discern the optimal fusion 
that elevates performance in classification tasks. 
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