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 This study aimed to optimize an efficient nutrient system to produce           
cut Lilium flowers while considering the recent severe water crisis and   
the high cost of chemicals and fertilizers. Lilium bulbs (Lilium OT Hybrid 
cv. ‘‘Zambesi’’) were grown in aeroponic (centrifugal) and ultrasonic          
systems with variable pulse periods. An ultrasonic system (on/off) time 
in seconds was considered 10/10, 15/5, and 20/0. An aeroponic system 
was 3/27, 6/24, and 9/21 in seconds. A modified Hoagland nutrient             
solution was applied, and plants were grown to the flowering stage. The
n, plant morpho-physiological responses were evaluated under                       
different systems and operation times. The growth rate in the vegetative 
stage and plant height were higher in the aeroponic compared to the          
ultrasonic system, but the effect of pulses was not significant. The                   
highest reproductive growth occurred in 10 and 20% pulses of the                
aeroponic system. Maximum root length was obtained in 10% of the           
aeroponic system operation. Maximum but unserious bulb rot was               
observed in 10% of the aeroponic systems compared to the others.               
Overall, 10% of the aeroponic system operation was recommendable         
for Lilium cultivation. Considerably, water consumption was less than      
half in the ultrasonic system compared to the aeroponic system. Also,          
the quantum performance of PSII decreased in the time performance by 
50%, but it showed better results than the other pulses in the ultrasonic 
system. The findings reveal that the low water need in the ultrasonic            
system is a promising achievement. Thus, we recommended performing 
additional experiments with different pulses and even frequencies to          
achieve better performances in this system. 
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Introduction1 
Lily (Lilium spp. (Liliaceae)) comprises more 
than 100 species and 700 cultivars. It is one of the 
most important economic ornamental crops (Cao 
et al., 2018), native to regions such as North 
America, Europe, and Asia (Kamenetsky and 
Okubo, 2012). The OT hybrid in this research is 
triploid. Triploid cultivars occur in a suitable 
ploidy level with good growth vigor and high 
adaptability (De Best and Zwart, 2000). The 
Zambsi variety from OT hybrids has white and 
fragrant flowers. It was introduced by the Van Den 
Boss company in the Netherlands.  
In the process of lily cut flower production, 
quantitative and qualitative parameters such as 
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flower color, flower size, vase life, and length or 
diameter of flowering stem are considered 
important traits, and the growing conditions of 
the plant in the pre-harvest could affect the post-
harvest quality by 30-70% (Marschner, 2012). 
According to the position of Lilium among other 
cut flowers in the world (fourth place in sales), as 
well as the demand for this flower in the global 
markets and annual sales report of 155 million 
cut flowers in Dutch flower market (Flora 
Holland, 2022), it is necessary and inevitable to 
pay attention to improve the quality and remove 
post-harvest problems of this crop (De Hertogh et 
al., 2012; Grassotti and Gimelli, 2011). 
Traditional agriculture (Geoponic) has faced 
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grave challenges in the agricultural sector with 
high water consumption, the need for vast lands, 
high levels of different fertilizer demand, and soil 
degradation challenges (Killebrew and Wolff, 
2014; Walls, 2014) along with global climate 
change and water scarcity (Li et al., 2016). These 
challenges have highlighted the need to pay 
attention to the novel cultivation patterns. 
Modified hydroponic and aeroponic greenhouse 
techniques are currently used where production 
per unit area increases regardless of less water, 
fertilizer, and space requirements (Lakkireddy et 
al., 2012). It also carries fewer environmental 
risks due to its low consumption of chemicals 
(Alshrouf, 2017). Aeroponics involves a 
hydroponic system in which water and nutrients 
are sprayed directly into the roots (Lakhiar et al., 
2018). This system has several advantages, 
including less nutrients and water consumption 
than soil cultivation and more oxygen available to 
the roots, which leads to optimal plant growth. 
This system also allows precise control of the root 
zone, with no need to disinfect the culture 
medium, with minimum labor requirement 
(Lakhiar et al., 2018b). Some researchers report 
that the aeroponic system can reduce water 
consumption by 95% (Li et al., 2020), fertilizer 
consumption by 60%, and toxins by 100% 
(Alshrouf, 2017). However, energy consumption 
in aeroponic systems must be considered (Niam 
and Sucahyo, 2020). 
In some aeroponic systems, the nutrient solution 
is vaporized using ultrasonic transducers that 
convert wave energy to mechanical vibration 
(Jamshidi et al., 2019). Some researchers have 
reported that ultrasonic waves can change the 
physical and chemical properties of the water-
containing nutrient solution, which can ultimately 
affect the plant yield (Doosti et al., 2012; Naddeo 
et al., 2014; Gao et al., 2016; Lakhiar et al., 2018). 
Tunio et al. (2021) used five minimum spraying 
times and a 30-minute spraying interval for 
lettuce in an ultrasonic system, stating that the 
constant contact of roots with oxygen stimulated 
metabolic processes and had positive effects on 
the growth of branches, the roots, and nutrient 
uptake. In the same direction, Liu and Zhang 
(2013) compared the ultrasonic system with the 
traditional piezometric atomizer, reporting better 
and more uniform absorption of nutrient solution 
by roots, prevention of root washing, and rapid 
growth of bamboo rhizomes and branches. Also, 
Chang et al. (2012) stated that aeroponics could 
be an appropriate system for producing potato 
mini tubers. They found that interruptions in 
nutrient supply at the stolon growth stage 
significantly increase root activity, restrict stolon 
growth, and finally induce tuber initiation. 

Therefore, non-tuberous conditions such as hot 
temperatures and late-season cultivars favor 
using this nutrient interruption technique. 
An ultrasonic mist is a metal device with a 
relatively small metal coating, which includes a 
plastic shell, internal adapter, and piezoelectric 
ultrasonic converter. This converter is the main 
component that generates high-energy vibrations 
at a frequency of 0.5 to 3 MHz (MegaHertz). The 
atomizer is placed in the center of the container 
under 2.5 to 10 cm of liquid solution and produces 
dusting of only a few microns (with an 
approximate size between five and one hundred 
and fifty microns) in the space around the root 
(Lakhiar et al., 2018). The use of ultrasonic 
systems in agriculture and mainly in the 
horticultural sector can be one of the substantial 
successes in the optimal use of water, nutrients, 
and energy for accurate production. An ultrasonic 
atomizer device can reduce energy consumption 
by about 90 to 93% (Niam and Sucahyo, 2020), 
but nowadays, ultrasonic atomizer technology 
has scantily proved effective on a commercial 
scale (Nithin et al., 2019; Yang et al., 2019). There 
are some reasons to explain this condition. First, 
the difficulty of adjusting some key parameters, 
such as the characteristics of the sprayer or 
droplet size and the flow rate of the droplet by 
plant needs, can impede this system. Secondly, the 
rational experimental output is nonexistent, 
relevant to the performance of each type of 
ultrasonic atomizer technology device and the 
nutritional demands of plants in such systems. 
Thirdly, the plant-based response to atomization 
characteristics resulting from variations in the UA 
(Ultrasonic Atomizer) device is unclear (Niam 
and Sucahyo, 2020). Thus, it is necessary to 
evaluate the performance of this system in 
comparison with other systems. Therefore, the 
purpose of this research was to select the right 
spraying time to achieve the desired growth of 
Lilium in hydroponic systems such as ultrasonic 
and centrifugal settings. 
 

Material and Methods 
In this experiment, Lilium bulbs (Lilium OT 
Hybrid cv. ‘Zambesi’) were grown in aeroponic 
(centrifugal) and ultrasonic systems with 
variable pulse spraying/fogging periods in 
aeroponic/ultrasonic, respectively. This 
experiment was performed in a growth chamber 
with automatic control of environmental 
conditions regarding temperature, light, and 
humidity in the workshop building of the 
Department of Agricultural Machinery 
Engineering, Faculty of Agriculture, University of 
Tehran, Iran. In this study, the solution pipelines 
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were arranged separately, and the boxes were 
placed perfectly. The automatic solution 
operation schedule was established. The 
ultrasonic fogging system was designed based on 
the piezoelectric phenomenon (electric pressure 
effect). In this system, piezoelectric ceramics 
were installed on the lower surface of the boxes, 
and for each box, four piezoelectric ceramics were 
considered. As a result of the impact of these 
ceramics, which have a high frequency and a small 
amplitude, small water particles (approximately 
five to one hundred and fifty microns in size) were 
suspended, either remaining on the root surface 
of the plant or due to weight, they slowly return 
to the surface of the water. Accordingly, by 
increasing the contact surface of the climate and 
the possibility of surface evaporation, the relative 
humidity of the plant root environment increases 
significantly. 
Then, we examined the function of centrifugal 
ultrasonic and aeroponic systems. In the first step, 
for this purpose, a variable pulse spraying (in an 
aeroponic system) and fogging period (in an 
ultrasonic system) were applied as in the 
aeroponic system, three times spraying pulses of 
3 to 27, 6 to 24, and 9 to 21 in seconds. The 
system's operation time was 10, 20, and 30%. In 
the ultrasonic system (with a frequency of 1.3 
MHz), three levels of fogging on/off times 
occurred in seconds of 10 to 10, 15 to 5, and 20 to 
zero (always on), with 50, 75, and 100% system 
time operation, respectively. For growing 
conditions, day/night temperatures of 
23/18±2 °C, relative humidity of 70%, the light 
intensity of 150-200 μmol m-2 s-1 (artificial light 
supplied with LED lamps Red/Blue ratios of 4:1), 
and 16/8 h of day/night photoperiod were 
considered. A modified Hoagland nutrient 
solution (Hogland and Arnon, 1950) was applied 
for nutrition which contained Ca(NO3)2.4H2O, 
NH4NO3, KNO3, KH2PO4 and MgSO4.7H2O in 
mM of 4, 1, 5, 1 and 1, respectively for macro-
elements and micro-elements as Fe-DTPA, 
H3BO3, CuSO4, MnSO4, ZnSO4 and H2MoO4 in 
mg L-1 of 24, 1.3, 0.03, 0.8. 0.1 and 0.01, 
respectively. The nutrient solution changed based 
on a recording of the pH and EC of the nutrient 
solution for the period of the experiment. 
Accordingly, a pH of 5.7±0.2 remained constant, 
and EC was adjusted to 1800±100 μS cm-1 when 
dropped below 1100 μS cm-1. Sampling was done, 
and traits were evaluated by coloring the flower 
buds at the same time as commercial harvest 
(Abbasi et al., 2020). Then, plant growth 
responses such as growth rate, dry weight, stem 
height, root length, number of root hair, bulb rot, 
chlorophyll fluorescence parameters, and PSII 
quantum function were evaluated as affected by 

different variable operation systems. 
 

Measuring quantitative traits 
The growth rate was evaluated by measuring 
plant height daily from the bulb crown to the tip 
of the branch based on centimeters per day. 
Root length was measured according to Tennant 
(1975), where the fresh roots were cut into 1 cm 
segments, and 0.3 g were randomly poured into a 
mesh tray (dimensions of 2 x 2 cm) containing 0.5 
cm depth of water. Then, the number of roots that 
intersected the horizontal and vertical lines were 
counted separately. Finally, the root length was 
calculated from the following equation:             
X= 11/14 * r (H+U)                                                        
where X is the root length by 0.3 g, r is the 
dimensions of the squares of the grid plate (here 
two cm), H is the number of roots that intersected 
the horizontal lines, and U is the number of roots 
that intersected the vertical lines. Then, the 
number obtained from the formula (X) was 
multiplied by the fresh weight of the whole root 
and the length of the whole root was calculated. 
For root hair measurements, the roots were 
collected and cut into 1 cm pieces. Root hairs were 
counted as described by Dechassa et al. (2003). 
To estimate the amount of bulb rot, the number of 
rotten bulb scales was counted, and the results 
were classified into five groups and calculated by 
the Likert method (1932). 
  

Measuring of photosynthetic parameters 
Chlorophyll fluorescence imaging in leaves 
attached to the plant near the harvest stage of 
each treatment enabled biophysical 
measurements after placing the plants in 
darkness for 20 min. The temperature for these 
measurements was the same as the temperature 
of the experiment. The leaves were subjected to 
Fv/Fm assessment using a fluorometer equipped 
with an imager (Handy FluorCam FC 1000–H, 
Photon Systems Instruments, Drásov, Czech 
Republic). The calculation of FV/FM occurred on a 
custom-made protocol (Aliniaeifard and Van 
Meeteren, 2014).  
 

Statistical analysis 
The research was performed using SAS statistical 
software version 9.4 (SAS Institute, Cary, NC, 
USA). The experiment was carried out as a 
factorial arrangement in a completely 
randomized design with three replications and 
three observations in each replicate. Comparison 
of mean values involved least significant 
differences (LSD, p<0.05). 
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Results 
Based on the results of the analysis of variance, 
the type of system had a significant influence on 
the growth rate (in vegetative and reproductive 
stages), plant height, root length, and root hair 
count, but had no significant effect on the bulb rot 
and leaf dry weight at the probability level of one 
percent. Also, the effect of the spraying pulse on 
the root length and bulb rot was significant at the 
probability level of one percent, but no significant 
effect was observed on the growth rate and plant 
height. The interaction effect of system types and 
spraying pulses on the growth rate in the 
reproductive stage, root length, number of root 
hair, bulb rot, and chlorophyll fluorescence 
parameters, including Fo, Fm, Fv, and Fv/Fm were 

significant but had no significant effect on the 
growth rate in the vegetative stage, leaf dry 
weight, plant height and Fm/Fo fluorescence 
parameter at the probability level of one percent. 
The maximum root length (5928.97 cm) was 
obtained in the aeroponic system with 10% as the 
lowest system operation time (Fig. 1). Also, the 
shortest root length (1768.93 cm) was in 50% of 
time operation of the ultrasonic system (30% 
reduction) which had no significant difference 
with other treatments (Fig. 1). The highest rot of 
Lilium bulbs (30%), significantly different from 
other treatments, was observed in the aeroponic 
system with 10% of system operation time and 
the lowest rot (2%) was obtained in the 
ultrasonic system with 50% performance (Fig. 
2).  

 

 
 

Fig. 1. Effect of spraying time in ultrasonic and aeroponic systems on the root length of Lilium. 
 
 

 
 

Fig. 2. Effect of spraying time in ultrasonic and aeroponic systems on Lilium bulb rot. 
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In this research, the highest vegetative growth 
rate (2.2 cm day-1) was observed in the aeroponic 
system with an operation time of 10% (1.25 cm 
day-1), and the highest reproductive growth rate 
(1.36 cm day-1) was observed with 20% of system 
operation time (Fig. 3 and 4). The growth rate in 
the ultrasonic system was slower, and plants in 
the aeroponic system showed better vegetative 

growth than in the ultrasonic system. However, 
with 50% ultrasonic system operation time, the 
reproductive stage (1.21 cm day-1) functioned 
similar to the aeroponic system. The lowest 
reproductive growth rate (0.66 cm day-1) was 
obtained in the ultrasonic system with 75% 
performance. The reproductive growth rate 
decreased by 30% in this treatment. 

 

 
 

Fig. 3. Effect of spraying time in ultrasonic and aeroponic systems on the growth rate of reproductive stage of Lilium. 

 

 
 

Fig. 4. Effect of ultrasonic and aeroponic systems on the growth rate of Lilium vegetative stage. 
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Regarding root hair count, more root hairs were 
observed with the 75% ultrasonic system 
operation time (25 # mm-1 root) and 100% (24 # 
mm-1 root) and there were no significant 

differences among other treatments. The lowest 
count (7 mm-1 root) was obtained with the 20% 
aeroponic system operation time (Fig. 5).  
 

 
 

 
 

Fig. 5. Effect of ultrasonic and aeroponic systems on the root hair count in Lilium plants. 

 
Based on the results, the maximum cut flower 
height (103.39 cm) was obtained in the aeroponic 
than in the ultrasonic system (80.03 cm). 

However, the effect of spraying pulses was not 
significant on this trait in both systems (Fig. 6). 
 

 

 
 

Fig. 6. Effect of ultrasonic and aeroponic systems on the height of Lilium plants. 
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Fig. 7. Effect of ultrasonic and aeroponic systems on the leaf dry weight in Lilium plants. 
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the issue of energy efficiency, the shortest pulse 
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Fig. 8. Effect of operating performance (%) of the ultrasonic system on the stem length of Lilium at different times 

after planting (DAP). 
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ratio decreased (0.66) in response to 50% ultrasonic system operation time (Fig. 13).  
 

 
Fig. 9. Effect of operating performance (%) of the aeroponic system on the stem length of Lilium at different times 

after planting (DAP). 

 

 
Fig. 10. Effect of ultrasonic and aeroponic systems and different pulses on Fo (minimum fluorescence) in Lilium plants. 

 

 
Fig. 11. Effect of ultrasonic and aeroponic systems and different pulses on Fm (maximum fluorescence) in Lilium 
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Fig. 12. Effect of ultrasonic and aeroponic systems and different pulses on Fv (variable fluorescence) in Lilium plants. 

 

 
 

Fig. 13. Effect of ultrasonic and aeroponic systems and different pulses on Fv/Fm (maximum photochemical quantum 
yield of photosystem II) in Lilium plants. 
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aeroponic system operation time). In the 
aeroponic system, humidity is the main 
component for vibrant plant growth and 
development. However, plant growth is 
significantly affected by the increase and decrease 
in relative humidity. It affects plant physiological 
functions and creates pathogenic problems. 
Therefore, it is crucial to regularly maintain and 
control the required humidity of the growth 
chamber based on plant-driven demands 
(Lakhiar et al., 2018). 
Numerous articles have stated that in aeroponic 
culture, research should determine droplet size 
and spray distance to improve continuous access 
to water and nutrients for optimal growth of plant 
aerial parts as vegetative and reproductive organs 
(Li et al., 2018; Tunio et al., 2021). This need has 
been addressed to some extent in the 
reproductive development stage of Lilium in the 
current study. The growth rate in the ultrasonic 
system was slower, and plants in the aeroponic 
system showed better vegetative growth than the 
ultrasonic one. 
Bucksetha et al. (2016), Margaret (2012), and 
Stoner and Clawson (1998) have stated that the 
main problem with the number of root hairs in 
the aeroponic system is related to water nutrient 
droplet size. Larger droplets permit less supply of 
oxygen availability in the root zone. The smaller 
droplets produce too much root hair without 
developing a lateral root system for sustainable 
growth. This means that roots may not form a 
lateral root system and thus cannot continue to 
grow (Lakhiar et al., 2019). According to the 
findings of the present research, the growth rate 
in the ultrasonic system was lower than in the 
aeroponic system. In this case, plants were forced 
to compensate by increasing root surface area and 
weight (Salachas, 2015). Photosynthetic 
materials are mostly allocated to the roots. 
However, ultrasonic could be an alternative 
production system for other high-value root 
production purposes. 
Also, researchers have shown that continuous 
contact of roots with oxygen in the aeroponic 
system stimulates metabolic processes, which in 
turn may positively affect branch growth and 
nutrient uptake (Tunio et al., 2021) and 
accordingly can lead to an increase in plant 
height. Lettuce growth parameters in the 
aeroponic system reportedly responded 
positively to nozzles that used air in the spray 
composition (Tunio et al., 2021). These results 
are consistent with the findings of the present 
study. 
Leaf dry weight improved in response to 30% 
aeroponic system operation time. Probably, the 
roots uniformly absorbed nutrients and moisture. 

Root morphology and architecture reportedly 
affected aerosol capture and thin film formation 
(Kratsch et al., 2006). Research into the 
formation, thickness, composition, and residency 
times of aeroponically-produced root surface thin 
films allowed aeroponic cultivation systems to be 
modified for the optimal performance of specific 
crops. It would be informative to assess the 
interplay between these parameters during root 
surface thin-film formation and retention for 
different crops. This might inform aerosol 
delivery regimes and characteristics for specific 
crops at defined developmental stages to ensure 
water, nutrient, and oxygen uptake to support 
optimal plant performance. It is anticipated that 
root surface thin-film formation is likely governed 
by aerosol composition, plant root architecture, 
and environmental properties (Eldridge et al., 
2020).  
Wider distances between misting sprayers and 
roots restricted root access to the water 
microdroplets, decreasing nutrient availability 
and absorbance. In this case, plants were forced 
to compensate by increasing root surface area and 
weight (Salachas, 2015). Thus, the droplet size 
and the misting interval will have a significant 
effect on the growth response of plants in the 
aeroponic and ultrasonic cultures. However, 
additional research is needed to prove this 
opinion. 
In line with Lakhiar et al. (2018), plant root 
structures responded to the root zone 
environment through enhanced growth and 
branching systems. Also, some researchers stated 
that roots encounter heterogeneous conditions 
along their growth axis and dynamically regulate 
root system architecture and root hair 
morphogenesis (Morris et al., 2017; Shahzad and 
Amtmann, 2017; Vissenberg et al., 2020). 
Regarding the results and our observations, 
especially in the early stages of growth in the 
aeroponic (centrifugal) system, the roots 
appeared more vertically than horizontally 
spread on the surface in the ultrasonic system due 
to the adaptation of the plant to absorb more 
food-rich fogs. In the aeroponic system, due to 
larger droplets, excess moisture can fall more 
easily with the vertical architecture of the roots.  
Water consumption in both aeroponic and 
ultrasonic systems was measured based on the 
amount of water entering and leaving the system. 
The results showed that water consumption in 
the ultrasonic system was about half of the 
aeroponic system (45%). 
The photosynthetic traits revealed whether the 
supply of water and nutrient solution to the plants 
by these systems and pulses followed plant-
driven demands. Characteristics of chlorophyll 
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fluorescence are a critical consideration for 
measuring the quantum yield of photosystem II 
(PSII) and photoinactivation by determining the 
possible quantum yield under water-limiting 
conditions (Batra et al., 2014). Photosynthesis is 
significantly affected by drought because the 
latter blocks the transport of energy from PSII to 
PSI (Siddique et al., 2016). By analyzing 
photosynthesis, one can determine the degree of 
resistance to adverse environmental conditions, 
e.g., excessive congestion (Prasad et al., 2015; 
Olechowicz et al., 2018) and drought (Kalaji et al., 
2018; Iqbal et al., 2019). 
Parameters derived from the rapid fluorescence 
induction kinetics test (OJIP transient) provided 
more information on the chlorophyll fluorescence 
and the quantum yield of PSII (Table 1). 
Chlorophyll fluorescence is an easily applicable 
method for assessing the adverse effects of 
environmental stresses on plants (Moosavi-
Nezhad et al., 2021; Moradi et al., 2021; Seif et al., 

2021; Shomali et al., 2021). This may suggest that 
chlorophyll fluorescence, which reflects energy 
excitation in PSII, can be used as an index for 
studying plant stress tolerance. The merits of this 
index are its stability under changing climates 
and its fast and easy application (Roden et al., 
1999; Roháˇcek, 2002). Furthermore, the 
parameters reflected by chlorophyll fluorescence 
indicate the overall photochemical leaf status but 
not their short-term status (Roden et al., 1999). 
Rapid fluorescence induction kinetics (OJIP 
transient) is a quick and non-destructive method 
applicable in many studies to assess 
photosynthetic functionality under different 
stress conditions (Bayat et al., 2018; Estaji et al., 
2019). OJIP transient reflects details about energy 
flow through the thylakoid membrane, 
specifically in PSII components (Kalaji et al., 
2017), and provides information about the 
physiological state of PSII (Antal and Rubin, 
2008). 

 
Table 1. Abbreviations and definitions of the photosynthetic parameters assessed in the current study. 

Abbreviation Definition  

Fo 
Minimum fluorescence, when all PSII reaction centers (RCs) are open (O-step 

of OJIP transient) 
F50µs 

Fv Variable fluorescence of the dark-adapted leaf Fm - Fo 

Fm Maximum fluorescence, when all PSII RCs are closed (P-step of OJIP transient) F1s = Fp 

Fv/Fm Maximal quantum yield of PSII photochemistry 1-(F0/Fm) = (Fm-F0)/Fm 

Fm/Fo Structural damage to PSII  

When an electron acceptor of quinone (QA) is in a 
reduction state, chlorophyll fluorescence is high, 
and accordingly, the amount of Fv increases 
likewise. When quinone is in its oxidation mode, 
chlorophyll fluorescence and Fv decrease 
(Paknejad et al., 2007). Environmental tensions 
decrease Fv due to the prevention of PSII 
photooxidation. Since the Fv indicates a complete 
reduction of quinone, drought stress disturbs the 
transfer of electrons to PSI (Ali-Dib et al., 1994; 
Ommen and Donnelly, 1999; Paknejad et al., 
2007). An increase in F0 indicates damage to the 
photosystem II electron collection chain, reducing 
the capacity of quinone A (QA) and its lack of 
complete oxidation due to the slow flow of 
electrons in photosystem II. In general, PSII 
becomes inactivated (Zlatev and Yordanov, 2004). 
The F0 increases due to drought stress, as 
reported by other researchers (Mamnoei and 
Seyed Sharifi, 2010; Javadipour et al., 2012). Also, 
when molecular quinone (as a primary electron 
acceptor in PSII) is in oxidized mode, it creates a 

situation where reaction center PSII is active, 
electron acceptors, and energy are transferred to 
PSI for producing ATP and NADPH. In such 
conditions, the system has the lowest 
fluorescence (F0). As the reduction escalates 
gradually, the fluorescence increases and 
continues until full-reduction, where reduction 
centers of PSII become closed gradually, and 
electron transfer to PSI no longer occurs. Then, 
the fluorescence of chlorophyll increases, and the 
centers of the photosystem have the highest 
fluorescence (Fm). Drought stress impedes 
electron acceptance and transfer capacity, causing 
the system to speed up Fm (Paknejad et al., 2007; 
Amirjan et al., 2009). 
In the current study, the reduced Fv/Fm and a 
higher chance of photoinhibition occurred 
because of a reduction in Fv/Fm value when the 
PSII function and structure were damaged by 
stress, causing most of the absorbed light energy 
to dissipate from the PSII reaction center 
(Moosavi-Nezhad et al., 2021). A decrease in 
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Fv/Fm occurred only in response to 50% 
ultrasonic system operation time. This decrease 
probably indicates that PSII operated while 
dependent on different efficiencies in different 
pulses of irrigation and that the intensity of the 
tension was significant enough that it destroyed 
the centers of the PSII. This event means that an 
increase in the first fluorescence can indicate 
degradation of the PSII reaction center, the 
transformation of the structure, and changes in 
PSII pigments in tension conditions such as 
drought (Havaux and Niyogi, 1999). However, 
with 50% ultrasonic system operation pulsing 
time, we observed a better final performance than 
the other two pulses. 
 

Conclusion 
As we know, aeroponics is a modern, innovative 
technology for plant cultivation without involving 
soils. This system is the best plant-growing 
technology in many aspects compared with 
different cultivation systems. According to the 
results, bulb rot was less prominent in ultrasonic 
systems. Primary traits, such as growth rate in 
vegetative and reproductive stages, plant height, 
and root length, showed higher values in the 
aeroponic system. Thus, the 10% aeroponic 
system is recommendable for Lilium cultivation if 
energy consumption is a concern. In the 
ultrasonic, the system operation time of 50% 
showed better results than other pulses. Water 
consumption in the ultrasonic was less than half 
of that in the aeroponic system. Regarding the 
water crisis, we can recommend additional 
experiments with different pulses and even 
frequencies to achieve better performance in this 
system. 
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