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 Photosynthetic parameters and stem strength of Gerbera jamesonii               
‘Bayadere’ plants were studied after foliar application with calcium chlo
ride (0, 0.5, 1, and 1.5 g L-1) under natural light (NL), red light LEDs (R), 
blue light LEDs (B) and red + blue light LEDs (RB). Chlorophyll content  
increased under LED lights and foliar application with calcium chloride. 
The maximal quantum yield of PSII efficiency (Fv/Fm) and performance   
index (PI) reached the lowest value under NL conditions. The highest         
values of photosynthesis rate, stomatal conductance, and transpiration    
rate (E) were achieved by RB lighting. Under the RB light and calcium        
chloride spraying, the plants showed the lowest leaf nitrate content,             
compared to NL conditions. This resulted in the highest leaf nitrate                 
content. The higher the nitrate content, the lower the stem strength.           
However, the leaf calcium content showed an opposite trend. Sprays of   
1.5 g L-1 calcium chloride in combination with RB lighting significantly in
creased the flower stem strength and reduced stem bending, compared  
to non-treated plants. In summary, the RB lighting and foliar application 
with calcium chloride enhanced the growth and flower stem firmness of 
cut gerbera.     
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Introduction1 
Gerbera (Gerbera jamesonii H. bolus ex Hook. f.) 
is an ornamental flower native to South Africa and 
belongs to the Asteraceae family. Due to its wide 
range of flower colors and shapes, the popularity 
of this flower is international. Based on the 
statistics of FloraHolland (2016), gerbera is 
placed among the top 10 cut flowers at Dutch 
flower auctions. In addition to its ornamental 
value, gerbera is also a model plant for studying 
the flower formation process (Bhattarai et al., 
2021).  
Healthy petals and the flowering stem (scape) are 
vital parts of this plant. Stem length and strength 
are highly important in terms of quality indices 
for gerbera cut flowers. Bending of the flowering 
stem (bent neck) is a major post-harvest disorder 
of gerbera which reduces its quality and vase life 
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(Cheng et al., 2020). Bacterial blockage of scape 
and subsequent shortage of water uptake at the 
cut surface of the stem is the major cause of 
bending in gerbera (Perik et al., 2014). However, 
this bending might also be related to other factors. 
Lack of mechanical support in the scape is a 
postulate cause. Perik et al. (2012) reported a 
correlation between bending and formation of a 
cylinder of sclerenchyma in stems. Moreover, 
bending correlated with levels of stem 
lignification. They concluded that stem bending 
occurs mainly due to water loss and low 
mechanical strength in the upper part of the 
stems. There are some cultural and 
biotechnological strategies to overcome this 
bending (Jaberian Hamedan et al., 2019). 
Management of the light spectrum during plant 
growth is a useful approach to enhance 
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photosynthesis, resulting in better development 
of lignin tissues (Pawłowska et al., 2018). 
Moreover, pre-harvest application with calcium is 
very useful to avoid bent neck and loss of visual 
quality of gerbera flowers (Aghdam et al., 2019). 
Light intensity, duration, and spectral 
composition regulate plant growth and 
development via different molecular and 
physiological pathways. Light is used as an energy 
source for carbon fixation in photosynthesis. 
Enhancements in photosynthesis lead to the 
production of more photo-assimilates that are 
involved in cell wall lignification. Cell wall 
polymers are mostly energy-rich linked sugars 
that form the major structural components in 
plant cell walls, particularly in the thick 
secondary cell walls that characterize certain 
tissues. Moreover, many physiological processes 
during plant growth and development are 
activated and regulated by light signals (Paradiso 
and Proietti, 2021). For optimal growth, each 
plant requires a defined amount of 
photosynthetic photon flux density (PPFD). In 
addition to light quantity, light color (spectral 
quality) affects plant photosynthesis and 
morphogenesis. For instance, red and blue light 
are the most important spectra in orchestrating 
photosynthesis (Paradiso et al., 2011). The 
development of photosynthetic apparatus is 
largely affected by red light. Blue light affects 
stomatal opening and chlorophyll biosynthesis in 
plants. Plant height and stem elongation are 
affected by blue and red/far red light. Far red light 
has a dramatic effect on the flowering of long day 
plants (Zheng et al., 2019). Alifar et al. (2020a) 
reported that blue LED lighting prolonged the 
vase life of carnation cut flowers by improving 
their antioxidant defense system in petals and 
enhancing photosynthetic performance in the 
leaves.  
Artificial light sources can change the quantity or 
quality of light for plants. Depending on the 
purpose of lighting, different lamp types have 
applications for plant production. High-intensity 
discharge (HID) lamps function in greenhouses 
and plant growth chambers. They have low 
efficiency and produce high radiant heat, which 
makes them difficult to use in summer (Magar et 
al., 2019). In contrast, light-emitting diodes 
(LEDs) exhibit higher energy efficiency with low 
thermal emissions when compared to traditional 
light sources (Cocetta et al., 2017). They are eco-
friendly light sources with high durability and 
long operating lifetime producing light at specific 
wavelengths (colors) (Rabara et al., 2017). In 
addition to the production area, LEDs can 
function during the postharvest of cut flowers. 
Alifar et al. (2020b) showed that the exposure of 

carnation-cut flowers to blue LED light postponed 
their senescence. This beneficial effect was due to 
the down-regulation of ethylene biosynthetic 
genes, with the up-regulation of ABA biosynthetic 
genes under blue light.   
Supplementary lighting is recommended for 
greenhouse production of cut flowers in regions 
with low light intensity (Llewellyn et al., 2020). In 
addition to light energy, lamps with different 
colors (wavelengths) can drastically affect the 
growth and postharvest quality of cut-flowers 
(Alifar et al., 2020a and b). The rate of flower bud 
initiation and development in gerbera is 
negatively affected by high temperatures. Thus, 
growing gerberas at lower temperatures 
produced by LED lamps were recommended. In 
research on gerbera, red (85%) + blue (15%) 
light was substituted for high-pressure sodium 
vapor lamps with the same photosynthetic active 
radiation. Flower diameter, flowering stem 
length, and fresh weight of the flowers increased. 
In addition, the quality and vase life of the flowers 
were improved (Llewellyn et al., 2019). In the 
same study, the growth of gerbera flowers was 
accelerated in greenhouse conditions under LED 
lighting (Llewellyn et al., 2020). Bud break, flower 
bud abortion, re-production of flowering shoots, 
harvest intervals, and petal coloration in roses 
highly depend on light (Zieslin and Tsujita, 1990). 
In potted Phalaenopsis, the number of 
inflorescences, florets, and flower size increased 
in response to supplemental LED light (Magar et 
al., 2019). 
The tight binding of calcium ions to pectin 
molecules maintains cell wall rigidity, thereby 
providing mechanical support to the plants 
(Hawkesford et al., 2012; Li et al., 2012). 
Moreover, polygalacturonase enzyme activity and 
degradation of middle-lamella are reduced in the 
presence of calcium (Wehr et al., 2004). Stem 
lignification by calcium application plays vital 
roles in water uptake by cut stems (Vanholme et 
al., 2010). Foliar application with calcium 
chloride in a bending-sensitive gerbera (Gerbera 
jamesonii ‘Rosaline’) increased water absorption, 
followed by delayed stem bending (Aghdam et al., 
2019). The authors indicated that lignin, 
cellulose, and hemicellulose contents of the 
flower stems increased significantly. Combrink 
(2017) reported that application with CaCl2 
hardened cell walls of gerbera scape. Applying 50 
mM calcium chloride with other compounds that 
increased vase life delayed the occurrence of bent 
necks in gerberas (Perik et al., 2014). 
In the present work, we studied the physiological 
responses and flower stem quality of cut gerbera 
(Gerbera jamesonii ‘Bayadere’) plants grown 
under different light quality and calcium 
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supplementation. The role of assimilates in 
improving physiological processes and stem 
strength was examined by LED artificial lighting. 
The role of calcium in enhancing stem stiffness 
was tested by pre-harvest foliar application with 
calcium chloride. 
  

Material and Methods 
Plant material and experimental conditions 
Tissue cultured plugs of Gerbera jamesonii 
‘Bayadere’ with 3-4 leaves were purchased from a 
local supplier. The plugs were transplanted into 
round 20 cm diameter × 20 cm height plastic pots 
filled with cocopeat: perlite (70:30 v/v) as the 
substrate. The pots were placed in a glasshouse 
and the plants were fertigated by Hoagland’s half 
strength solution (1950) for 10 days. After 
acclimatization to glasshouse conditions, the 
plants were fertigated by recommended 
nutritional formula provided by the supplier. The 
current experiment was conducted in Rafsanjan 
city (latitude 30°24′24″ N, longitude 55°59′38″ E, 
1514 m above mean sea level). Climate control 
equipment in the glasshouse were adjusted to 
provide day and night temperatures of 25 ± 2 °C 
and 20 ± 2 °C, respectively. Relative humidity was 
maintained at approximately 60%. The average 
photosynthetic photon flux density (PPFD) of 
natural light in the glasshouse was 115 µmol m-2 

s-1. All light treatments were applied with a 
photoperiod of 16 h light and 8 h dark.  
 

Light and calcium treatments 
The artificial light sources were LEDs of red light 
(100%), blue light (100%) and combined light 
sources of red (70%) + blue (30%) with an 
intensity of 200 μmol m-2 s-1. Four LED fixtures 
(Iran Grow Light, Iran) were installed along the 
center of each bench and were fixed 25 cm above 
the pot level. Gerbera pots were located centrally 
on the benches. Each fixture consisted of 24 LEDs 
and a coverage area of 100 × 40 cm2 per meter. 
The current flow, power, and voltage of the lamps 
were 350 mA, 24 W, and 265-85 V, respectively. 
Artificial lighting on the plants was performed 
from 6 A.M. to 10 P.M. To prevent light 
contamination, each bench was separated with a 
cardboard. Plants grown under natural light were 
regarded as the control. Artificial lighting started 
after the acclimatization of plants to glasshouse 
conditions and continued until the end of the 
experiment. Fig. 1 shows plants under light 
treatments and spectral graphs of light sources.  
After the appearance of the first flower bud, 
calcium chloride was sprayed at 0, 0.5, 1, and 1.5 
g L-1. Spraying intervals were 10 days and the 
plants were sprayed 10 times in total.  
 

 

 

 
Fig. 1. Photos of the plants grown under 100% red (A), 100% blue (B), and 70% red + 30% blue (C) LED lights and 
control plants under natural sunlight (D). The light spectra produced by LED lights (E-G) and sun (H) are shown in 

graphs. 

 
 

Determination of chlorophyll content and 
fluorescence  
For the destructive measurement of chlorophyll 
concentration, 0.25 g of fresh leaf was ground in 
10 mL of 80% (v/v) acetone. Ground tissue was 
centrifuged at 3500 xg for 10 min. The pigment 

content of the supernatant was determined using 
a spectrophotometer, described by Lichtenthaler 
(1987). Moreover, chlorophyll content was 
measured non-destructively as the chlorophyll 
content index (CCI) of young fully expanded 
leaves using a chlorophyll meter (SPAD, Konica, 
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P502, Japan). The average of three measurements 
per leaf was recorded as CCI. 
Chlorophyll fluorescence was measured with a 
portable Handy Plant Efficiency Analyzer (PEA, 
Hansatech, UK) as described by Bulgari et al. 
(2015). Before measurements, leaf clips (4 mm 
diameter) were attached to leaves, and after 15 
min, the maximal quantum yield of PSII efficiency 
(Fv/Fm) and Performance Index (PI) were 
recorded on dark-adapted leaf tissues. Here, PI 
shows the performance index for energy 
conservation from photons absorbed by the PSII 
antenna to the reduction of QB during 
photosynthesis.  
 

Gas exchange measurements 
Gas exchange was measured on attached and fully 
expanded healthy leaves at the beginning of 
flowering between 9:30 and 11:30 am. using a 
portable LCi photosynthesis system (ADC 
BioScientific Ltd., UK). Net photosynthetic rate 
(Pn, μmol CO2 m-2 s-1), stomatal conductance of 
H2O (gs, mol H2O m-2 s-1), mesophyll conductance 
of CO2 (gm, mmol m-2 s-1), internal CO2 (ci, vpm), 
and transpiration rate (E, mol H2O m-2 s-1) were 
determined on each leaf. The ratio of Pn to E was 
calculated and reported as instantaneous water 
use efficiency (WUEins, µmol CO2 mol-1 H2O).    
 

Analysis of leaf calcium and nitrate 
concentration 
The calcium concentration of the leaves grown 
under different light conditions and chloride 
calcium sprays was determined. Four fully 
expanded leaves were sampled per treatment. 
Sampling occurred at harvest time. The samples 
were dried in a hot air oven for 48 h at 60 °C and 
then ground to get a fine powder. The powdered 
samples (0.5 g) were digested in 2 NHCl to make 
an extract. Calcium concentration in this extract 
was measured by titration with EDTA (Ryan et al., 
2001). The nitrate concentration was determined 
using a LAQUA Twin Nitrate (NO3-) rapid 
response digital meter (LAQUA Twin Nitrate 
Meter, Spectrum Technologies, Inc., USA). This 
instrument provides reliable data on nitrate 
content in plant tissues (Chang and Chang, 
2014).  
  

Evaluation of scape quality 
Flowers were harvested after one complete ring 
of matured anthers had formed (the opening of 

two rows of flower flags). Cut flowers were 
individually placed in 250 mL glass bottles 
containing distilled water. To evaluate flower 
quality, stem neck diameter (the portion just 
below the capitulum) and stem bending were 
measured on each harvested flower. Stem neck 
diameter was measured using a digital caliper. To 
estimate stem bending, angles of the capitulum 
surface concerning the vertical side were 
measured. Therefore, the scape curvature was 
measured based on the method described by 
Çelikel and Reid (2002). In this method, the angle 
between the main stem (scape) and neck was 
determined.  
 

Statistical analysis 
The experiment was arranged as factorial based 
on a completely randomized design (CRD) with 
two factors, including light quality (four levels) 
and spraying of calcium chloride (four levels) 
with four replications. Data were subjected to a 
two-way analysis of variance (ANOVA) and means 
were separated using Duncan’s new multiple 
range test (DNMRT) at 5% level of significance (p 
≤ 0.05) using SAS 9.1.  
 

Results 
Photosynthetic pigments 
Results of the photosynthetic pigments 
measurements of gerbera leaves influenced by 
different light quality and calcium chloride 
concentrations are shown in Table 1. Based on the 
ANOVA, the interaction effect of light and calcium 
chloride on chlorophyll concentration was 
significant. However, no considerable variations 
in chlorophyll a concentration occurred among 
the different light and calcium treatment groups. 
Plants grown under R light and sprayed with 1 g 
L-1 calcium chloride exhibited the highest 
chlorophyll a content (1.26 mg g-1 FW). However, 
this treatment was not significantly different from 
many other treatments. The lowest 
concentrations of chlorophyll a under B light 
(0.73 mg g-1 FW) and RB light (1.08 mg g-1 FW) 
occurred using 1 g L-1 calcium chloride that 
showed significant differences compared to the 
control. Exposure to RB light approximately 
doubled the amount of chlorophyll b compared to 
monochromatic R or B light. 
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Chlorophyll content index (CCI) and 
chlorophyll a fluorescence 
The chlorophyll content index (SPAD value) was 
significantly affected by the interaction effect of 
CaCl2 and light quality. The highest value (58) was 
associated with the treatment of 1 g L-1 CaCl2 + R 
light which showed no significant difference 
compared to 1 g L-1 CaCl2 + B light. The lowest 
values were obtained under R (45) or B (47) 
lighting in the absence of calcium chloride 
treatment (Table 1).  
Chlorophyll a fluorescence shows the maximal 
photochemical efficiency of photosystem II. PI 
represents the performance of photosynthetic 
systems and was only affected by artificial 
lighting. Plants grown under B light increased in 
Fv/Fm compared to plants that received natural or 
R light. However, adding R light to blue LED lamps 
did not significantly affect this parameter. The PI 
values of gerbera plants were not significantly 
affected by exposure to different light qualities. 
However, the PI values of plants grown under NL 
conditions were much lower than LED-grown 
plants (Fig. 2). 
 

Leaf gas exchange parameters 
The average net photosynthetic rate and stomatal 
conductance significantly increased in LED light-
treated gerbera plants compared to the effect of 
the NL treatment. Plants grown under RB light 

showed the highest rate of photosynthesis. Using 
RB light, Pn was approximately 1.5 times higher 
than leaves under NL. There was no significant 
difference among NL, R, and B light treatments. 
Internal CO2 concentration (ci) and mesophyll 
conductance of CO2 (gm) were not significantly 
affected by light or calcium treatments. Maximal 
stomatal conductance occurred under combined 
red and blue light (Fig. 3A and B). The lowest gs 
occurred under R light, about half of its value in 
plants exposed to RB LEDs. 
The transpiration rate and instantaneous water-
use efficiency significantly changed under 
different light qualities. Calcium treatments did 
not highly alter these traits. Like the trends 
obtained for Pn and gs, the E of plants grown 
under RB light was higher than those grown 
under the other light sources. The transpiration 
rate approximately doubled after adding the B 
light source to the R light. Blue and NL light 
conditions exhibited no significant impact on E 
values. In contrast to E and gs, the highest amount 
of WUEins occurred in plants treated with R light 
which was approximately two times higher than 
WUEins in plants exposed to B light (Fig. 3C and 
D).  
 
 
 
 

Table 1. Chlorophyll concentration (mg g-1 FW) and chlorophyll content index (CCI) of gerbera (Gerbera jamesonii ‘Bayadere’) 
leaves under different light spectra and spraying with CaCl2. 

Light spectrum CaCl2 (g L-1) Chlorophyll a Chlorophyll b CCI 

NL 0 1.18 ± 0.089ab 0.703 ± 0.111abc 57 ± 0.753ab 

 0.5 1.23 ± 0.043ab 0.900 ± 0.171ab 54 ± 1.256bcd 

 1 1.16 ± 0.107ab 0.588 ± 0.120abc 52 ± 0.478cd 

 1.5 1.25 ± 0.014ab 0.730 ± 0.071abc 55 ± 0.485abc 

R 0 1.25 ± 0.010a 0.680 ± 0.049abc 45 ± 1.285e 

 0.5 1.26 ± 0.015a 0.750 ± 0.087abc 50 ± 1.452d 

 1 1.23 ± 0.020ab 0.668 ± 0.110abc 58 ± 0.267a 

 1.5 1.18 ± 0.022ab 0.445 ± 0.043c 54 ± 1.695bcd 

B 0 1.19 ± 0.030ab 0.520 ± 0.039c 47 ± 0.526e 

 0.5 1.18 ± 0.058ab 0.588 ± 0.032c 54 ± 0.928bcd 

 1 0.73 ± 0.050c 0.458 ± 0.201c 57 ± 0.711ab 

 1.5 1.20 ± 0.004ab 0.415 ± 0.054c 53 ± 0.749cd 

R + B 0 1.25 ± 0.017a 0.730 ± 0.087abc 57 ± 0.383ab 

 0.5 1.23 ± 0.037ab 0.738 ± 0.061abc 57 ± 0.383ab 

 1 1.08 ± 0.102b 0.558 ± 0.103c 53 ± 2.881bcd 

 1.5 1.20 ± 0.014a 0.938 ± 0.088a 55 ± 0.621abc 

Mean values marked with the same letter within columns do not differ significantly based on Duncan’s Multiple Range Test at p ≤0.05.  
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Fig. 3. The photosynthesis indices of gerbera plants grown under four different light sources including natural light 
(control, NL), red light LEDs (R), blue light LEDs (B) and combined 70% red + 30% blue light LEDs (RB). (A) Net 

photosynthetic rate (Pn); (B) stomatal conductance (gs); (C) transpiration rate (E); and (D) instantaneous water use 
efficiency (WUEins). Bars represent mean ± SD, n = 4. Bars with the same letter are not significantly different 

(p≤0.05) according to Duncan’s Multiple Range Test. 

 

Leaf calcium and nitrate content  
Both calcium and nitrate concentrations in 
gerbera leaves were significantly affected by the 
interaction between light sources and calcium 
chloride. Calcium concentrations in the leaves of 
plants grown under RB light, treated with 1.5          
g L-1 CaCl2, showed an increase of more than 3.5-
fold, compared to the lowest value (0.05) under 
NL conditions (Fig. 4). In comparing R and B light 
LEDs, red light showed a higher increase in leaf 
calcium content.  
The presence of RB light in the spectrum 
interestingly reduced the amount of leaf nitrate to 
60% of its highest value observed in plants 
sprayed with 1 g L-1 CaCl2 under the NL (Fig. 5). In 
comparing NL conditions and LED lighting, the 
gerbera plants had more leaf nitrate under the NL.  
 

Scape quality 
Statistical analysis showed that light and calcium 
chloride significantly improved floral scape 

quality. Application with RB light or 1.5 g L-1 
calcium chloride significantly increased neck 
diameter compared to controls (NL conditions or 
no application with calcium chloride). However, 
no significant differences occurred among 
different light qualities or other concentrations of 
calcium chloride (Fig. 6). Moreover, measuring 
stem bending indicated that flower stem strength 
differed by exposure of gerbera plants to different 
light qualities or applying calcium chloride. 
Higher calcium chloride concentrations 
dramatically reduced stem bending by more than 
10-fold. Moreover, stem bending of plants 
exposed to LED light was at least half of those 
grown under NL. The flower stem of plants grown 
under NL conditions, with no calcium spray, 
showed the highest curvature (65.8 degrees). In 
contrast, foliar application with 1.5 g L-1 CaCl2 on 
plants under RB light resulted in the lowest 
curvature (2.4 degrees) (Fig. 7). 
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Fig. 4. The interaction effect between calcium and light on leaf calcium concentration of gerbera plants grown under 

four different light sources, i.e. natural light (control, NL), red light LEDs (R), blue light LEDs (B) and 70% red + 30% 
blue light LEDs (RB). Bars represent standard errors of four replicates. Values with different letters are significantly 

different according to Duncan’s Multiple Range Test at p≤0.05. 

 

Fig. 5. The interaction effect between calcium and light on leaf nitrate concentration of gerbera plants grown under 
four different light sources, i.e. natural light (control, NL), red light LEDs (R), blue light LEDs (B) and 70% red + 30% 
blue light LEDs (RB). Bars represent standard errors of four replicates. Values with different letters are significantly 

different according to Duncan’s Multiple Range Test at p ≤0.05. 
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Fig. 6. Effects of different light spectra (A) and concentrations of calcium chloride (B) on neck diameter of gerbera 

plants grown under four different light sources, i.e. natural light (control, NL), red light LEDs (R), blue light LEDs (B) 
and 70% red + 30% blue light LEDs (RB). Bars represent standard errors of four replicates. Values with different 

letters are significantly different according to Duncan’s Multiple Range Test at p≤0.05. 

 

 

 
 

Fig. 7. Scape bending of gerbera flowers under four different light sources, i.e. natural light (control, NL), red light 
LEDs (R), blue light LEDs (B) and 70% red + 30% blue light LEDs (RB). Vertical bars show standard errors of four 

replicates. Values with different letters are significantly different according to Duncan’s Multiple Range Test at p≤0.05. 
 
 
 

Discussion 
Scape bending is a major cause that limits the vase 
life of cut gerbera. However, manipulating 
environmental factors and plant nutrition can 
mitigate stem bending and therefore prolong the 
postharvest life of this attractive cut flower. In the 
present study, we report that cut gerbera 
(Gerbera jamesonii ‘Bayadere’) plants enhanced 

their tolerance to bending of floral scape by 
improving their photosynthesis and stem 
mechanical strength.  
Based on the results of destructive and non-
destructive (SPAD values) evaluation of 
chlorophyll concentration, RB LED light was 
favorable for biosynthesizing chlorophyll a and b. 
Mixed LED lights reportedly promoted 

A B 
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chlorophyll production in gerbera (Cioć and 
Pawłowska, 2020). In chrysanthemums, the 
highest content of chlorophyll a + b was achieved 
under R (80) + B (20) LED light (Thanh-Tung et 
al., 2018). They indicated that both types of LEDs 
that emit red and blue light are required for the 
growth of chrysanthemum plants. Fan et al. 
(2013) proved that chlorophyll biosynthesis 
in Brassica campestris L. increased by 
simultaneous application with red and blue LED 
lights. Chlorophylls are involved in light 
absorption and directly affect photosynthesis in 
plants. Light quality has a direct effect on 
photosynthetic pigments in plants. 
Cryptochromes and phototropin receive blue 
light and regulate the formation of chlorophyll in 
plants (Fankhauser and Chory, 1997). We 
conclude that RB LED light improved the 
biosynthesis of photosynthetic pigments.  
Besides artificial lighting, foliar application with 
calcium spray showed positive effects on the 
biosynthesis of chlorophylls. Calcium promotes 
plant growth by enhancing the uptake of essential 
nutrients (Ahmad et al., 2015). Some minerals, 
such as nitrogen and magnesium, are involved in 
chlorophyll structure. Moreover, when Ca2+ binds 
to calmodulin (CaM), a calcium-binding 
messenger protein, it triggers biological 
processes. In chloroplasts, there is an interaction 
between CaM and NAD kinase, regulated by the 
Ca2+/CaM complex, and is essential for the 
biosynthesis of chlorophyll. Chlorophyll content 
in Arabidopsis NADK2 mutants (nadk2) 
reportedly decreased (Hochmal et al., 2015). 
Moreover, calcium plays an indirect role in 
chlorophyll biosynthesis by controlling the 
hydration state of the membranes and the 
cytoplasm (Pal and Laloraya, 1972).  
The current study showed that the performance 
index (PI) pertaining to the photosynthetic 
apparatus was much higher under all light 
qualities compared to NL. Moreover, the highest 
values of chlorophyll fluorescence (Fv/Fm) 
occurred under B light. Based on the PI and Fv/Fm 
data, Cioć et al. (2021) indicated that the 
performance of the photosynthetic apparatus of 
in vitro gerbera leaves was reduced under R light. 
In contrast, involving B LED light could 
significantly increase the photosynthetic 
performance. Aliniaeifard et al. (2018) reported 
the detrimental effects of monochromatic red 
light on the morphology and photosynthesis of 
English marigolds. They indicated that red light 
resulted in leaf deformation (epinasty) and lower 
Fv/Fm and PI, compared to the full light spectrum. 
Moreover, most of the energy absorbed by the 
photosystems dissipated as heat under the 
monochromatic red-light treatment. In pepper, 

seedlings grown under LEDs exhibited 
significantly higher PI values, compared to plants 
grown under HPS lamps (Sobczak et al., 2021). 
Seedapalee et al. (2021) showed that B lighting 
resulted in the highest Fv/Fm value of Helianthus 
tuberosus L. seedlings compared to the other 
light sources. Generally, PI is a very sensitive 
indicator that shows the performance of 
photosynthetic apparatus. LED-grown leaves 
reportedly contained more chloroplasts with 
thicker grana resulting in higher PI value 
(Sobczak et al., 2021). The Fv/Fm ratio often 
indicates the maximum quantum efficiency of 
photosystem II. It appears as the maximum 
photochemical yield of PSII in the dark-adapted 
state. Thus, the higher Fv/Fm values under B light, 
compared to NL conditions, indicated that 
gerbera plants had a better growth status under 
artificial lighting. 
In this study, the net photosynthetic rate and 
stomatal conductance increased using different 
light qualities. The lowest photosynthetic rate 
was observed under monochromatic blue light. 
The photosynthesis rate under RB LED light was 
higher than other lights. No significant differences 
were observed in internal CO2 concentration and 
mesophyll conductance, suggesting that 
differences in the photosynthetic rate were not 
due to a limitation of internal CO2 concentration 
or gas exchange through mesophyll. The 
literature review indicates that the effect of light 
sources on photosynthetic parameters is 
completely species-dependent. In two Rosa 
hybrida cultivars, plants grown under 
monochromatic blue light exhibited declined 
photosynthesis rates despite increasing levels of 
stomatal conductance and internal CO2 
concentrations (Abidi et al., 2013). The highest 
photosynthesis rate of in vitro chrysanthemum 
plantlets occurred under RB LED light (Kim et al., 
2004). Lian et al. (2002) reported that the 
greatest extents of bulblet growth in Lilium under 
RB light may be due to greater photosynthesis. 
Net photosynthesis in petunia leaves declined 
during the transition to the flowering phase. 
However, this reduction was slower in plants 
grown under RB LEDs than those grown under 
white light (Phansurin et al., 2017). 
Photosynthesis in higher plants is a wavelength-
dependent process. The spectral energy emitted 
by RB LEDs is consistent with chlorophyll 
biosynthesis and absorption spectra (Kim et al., 
2004). Thus, LED lights, specifically RB, may 
enhance photosynthesis. RB light increases 
photosynthetic pigments and their respective 
excitation levels (Joshi et al., 2019). Moreover, 
blue light acts vitally in chlorophyll formation and 
chloroplast development. Also, blue light 
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regulates stomata opening for CO2 uptake during 
photosynthesis (Mao et al., 2005). Besides blue 
photons, red light is also involved in signaling to 
control stomata opening (Tennessen et al., 1994). 
Thus, combined application with red and blue 
light could enhance stomatal conductance and 
improve photosynthesis. 
We found that the highest E value occurred in 
plants treated with RB light. In contrast, water use 
efficiency was lower under B or RB light. Stomata 
regulate water evaporation in plants. Light quality 
clearly impacted the stomatal function and the 
leaf E value (Matsui et al., 1981). Stomata 
differentiation is encouraged under blue light 
(Kang et al., 2009). Moreover, phototropins are 
responsible for regulating the stomatal function 
under blue light. Thus, higher E under RB light in 
our experiment shows that blue light promoted 
stomata opening and resulted in higher 
transpiration. However, water use efficiency 
reflects the ratio of photosynthesis to 
transpiration. Stomatal conductance has an 
inverse relation with water use efficiency. 
Therefore, the higher the stomatal conductance, 
the lower the water use efficiency. In our research, 
higher stomatal conductance under B and RB light 
increased the E value and thus led to lower water 
use efficiency. 
Our measurements showed that RB light and 
calcium spray resulted in the lowest leaf nitrate. 
In contrast, plants grown under NL conditions 
contained the highest nitrate. In the case of leaf 
calcium content, it was the opposite. Due to health 
concerns, most research cases on light and leaf 
nitrate were aimed at vegetable crops. The 
literature review shows that light quality alters 
leaf nutrient content. In a research, Nicole et al. 
(2018) reported that RB light reduced the nitrate 
level of various lettuce cultivars. Moreover, the 
leaf nitrate content of baby-leaf spinach declined 
under different light qualities. In some vegetable 
species, nitrate content declined under LED 
lighting compared to those grown under white 
light (Nájera and Urrestarazu, 2019). Besides 
food crops, controlling nitrate levels in 
ornamental plants is particularly important. 
Nitrogen fertilizers significantly affect the stem 
properties of trees. In poplar, the structure and 
composition of the cell wall and lignification 
pattern was changed in response to the high 
nitrogen supply (Pitre et al., 2007; Li et al., 2012; 
Plavcová et al., 2012). In a hybrid of poplar, the 
lignin content of stems declined using N 
fertilization (Novaes et al., 2009). A reduction in 
nitrogen supply improved stem lignification in 
eucalyptus (Camargo et al., 2014). Nitrate 
reductase activity is regulated by light. The 
molecular basis of this regulation was reviewed 

by Lillo and Appenroth (2001). They reported 
that a photosynthesis-dependent post-
translational modification is involved in this 
process. Photosynthesis may influence nitrate 
reductase activity via photo-assimilates, 
substrates (nitrate, NADH), and/or by influencing 
Ca2+ flux. We conclude that a small nitrate 
concentration and a higher calcium concentration 
in leaves under RB light improved floral scape 
rigidity. Thus, besides an improved 
photosynthesis rate, the better balance between 
NO3- and Ca2+ ions reduced floral scape bending.  
Artificial LED lighting and calcium chloride spray 
drastically mitigated stem bending, the major 
post-harvest disorder of gerbera, compared to 
plants grown under NL with no calcium chloride 
treatment. Low mechanical strength and high 
water loss, especially in the neck, are the main 
reasons for stem bending in gerbera. Thus, 
treatments that promote stem lignification and 
neck diameter result in simultaneous better 
mechanical strength and improved water uptake, 
followed by a reduction in stem bending 
(Camargo et al., 2014). In the case of light, more 
research on the impact of light intensity and stem 
mechanical strength provided precise 
information. Few reports are available on the 
effect of light spectrum on stem diameter. Yousef 
et al. (2021) studied the influence of light quality 
on the morpho-physiological traits of grafted 
tomato seedlings. They reported that stem 
diameter was not significantly affected by light 
quality. However, the higher value of this trait 
occurred under B light, and plants developed well 
under RB light. Other research indicated that a 
mixture of the red and blue LED provides the best 
light quality to encourage the formation of 
vascular bundles in grafted tomato seedlings (Wei 
et al., 2018; Lee et al., 2016).  
The main proportion of the total calcium in plant 
tissues is in cell walls as calcium pectate, which 
helps the cell wall be rigid and turgid. Thus, 
calcium plays a direct role in stem strength. 
Aghdam et al. (2019/G2-6) used calcium chloride 
spray on a bending-sensitive gerbera (Gerbera 
jamesonii ‘Rosaline’). They realized that the 
lignin, cellulose, and hemicellulose content in 
floral scapes increased. It resulted in higher water 
uptake and delayed stem bending. Van Ieperen 
and van Gelder (2006) showed that calcium 
contributes to the cell wall formation of the 
chrysanthemum stem and thus facilitates water 
uptake. However, there is a positive correlation 
between light intensity and calcium flow in xylem 
sap. Light encourages the formation of vascular 
bundles and thus improves calcium flow and 
accumulation. Higher calcium transportation, 
accumulating in sclerenchyma tissues, resulted in 
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higher mechanical stiffness and strength. 
Consistent with other studies, we conclude that 
calcium treatment could enhance the mechanical 
strength of floral scape by hardening cell walls. 
Moreover, a higher photosynthesis rate under RB 
LED improved neck diameter and better 
formation of vascular bundles, which led to a 
significant reduction in stem bending.   
 

Conclusion  
In the current study, RB LED lighting and spraying 
1-1.5 g L-1 calcium chloride improved the main 
parameters involved in the photosynthesis of cut 
gerbera (Gerbera jamesonii ‘Bayadere’). The 
treatments improved the neck diameter and 
mechanical strength of the floral scape. Thus, 
scape bending in these plants decreased, 
compared to those under NL without the calcium 
spray. Thus, our findings indicated that the 
manipulation of the light spectrum and foliar 
application with calcium sources can assist in 
preventing the bent neck disorder in cut gerbera. 
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