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 A synthetic seed method involves processing encapsulated plant 
parts and any meristematic tissue which can develop into 
plantlets under in vitro or in vivo conditions. Various 
parameters and evaluation methods of ‘one-variable-at-a-time’ 
could be time-consuming, expensive, and inefficient. Thus, using 
process-modeling approaches including Multi-Layer Perceptron 
(MLP) and the Radial-Basis Function (RBF) can be required and 
beneficial for the prediction of synthetic seed weight. In the 
present study, two different types of artificial neural network 
(ANN) algorithms, the MLP and RBF models, have been 
developed to predict the weight of Phalanopsis orchid synthetic 
seeds using an encapsulation set-up especially developed for 
this purpose. Various topologies of ANN were configured based 
on different concentrations of sodium alginate (3, 4, and 5 
(w/v)), calcium chloride (100,125, and 150 (mM)), and droplet 
falling height of sodium alginate (1, 1.5, and 2 cm) as input 
variables and the values of synthetic seed weights as output 
variables. Results showed that the RBF algorithm (R= 0.98 and 
SSE= 0. 13× 10-3) outperformed the MLP algorithm (R= 0.91 
and SSE= 0.14× 10-3) owing to its better ability for predicting 
capsule weight. This study presented a machine learning-based 
approach for the classification of synthetic seeds. Algorithms for 
the extraction of capsule features have been developed, which 
are in turn used for training artificial neural network (ANN) 
classifiers. The outputs of ANNs were successfully applied 
herein to model the synthetic seeds production process, 
indicating that the appropriateness of the model equation in 
predicting orchid synthetic seed weight is mathematically 
integrated. 
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Introduction1 
Synthetic seed technology is a popular method in 
plant biotechnology and agricultural science that 

                                                                    
* Corresponding author’s email: Sellami.fac@gmail.com 

can be defined as artificial encapsulation of 
explants for creating whole plants in vitro or in 
vivo (Magray et al., 2017). These synthetic seeds 
can retain their viability in terms of sprouting and 
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conversion potential even after a considerable 
period of storage. The use of synthetic seeds helps 
the commercial propagation of rare and valuable 
plant species. The explants applied for 
encapsulation include somatic embryos, nodal 
segments, and protocorm-like bodies (PLBs). 
This kind of seed could be successfully planted in 
the field or greenhouse, having a potential for 
mechanical sowing at a commercial level, similar 
to regular seeds (Rihan et al., 2017). Another 
reason for using artificial technology is the fact 
that micro-propagules and somatic embryos are 
susceptible to drying unless coated with a 
hydrogel for planting in a greenhouse or 
mechanical sowing in the field (Chandra et al., 
2018). Although various substances such as guar 
gum, sodium pectate, carrageenan, and agar have 
been studied as hydrogels for artificial seed 
production, sodium alginate is the most 
frequently used matrix because of its proper 
thickness, low toxicity to microorganisms, cost-
effectiveness, bio-suitability, fast gelation, 
improvement in capsule structure and rigidity as 
well as better protection of explants against 
mechanical damage (Siraree, 2022). For the 
production of synthetic seeds, the explants are 
covered by sodium-alginate solution (0.5-5.0% 
w/v) consisting of liquid MS medium with 
sucrose. This is followed by adding a calcium 
chloride solution (30-100 mM) and then 
autoclaving. Since the desirable quality of 
capsules mainly depends on the gel matrix, they 
should consist of protective and nutritional 
agents which provide an appropriate micro-
environment around the somatic embryos (Kocak 
et al., 2019). 
Protocorm and PLBs are increasingly utilized by 
researchers as explants for the micropropagation 
of many rare and endangered orchid species 
(Antonietta et al., 2007; Chen et al., 2009; Fang et 
al., 2016; Gantait et al., 2015; Lee et al., 2013; 
Pradhan et al., 2014; Yeung, 2017). In most of 
these works, it was noted that not just the 
concentrations of the two gelling agents (sodium 
alginate and CaCl2.2H2O) but also the duration 
allowed for mixing can critically affect the 
structure, formation, roundness, rigidity, and 
flexibility of synthetic seeds. These factors, in 
turn, affect seed characteristics such as 
germination and storage ability (Oceania et al., 
2015). In most cases, 2-3% of Na-alginate, when 
integrated with 75-100 mM calcium chloride 
solution, produced a desirable quality of synthetic 
seeds in many plant species (Reddy et al., 2012). 
With 800 genera and 25000 species, orchids are 
one of the most fascinating of the ornamental 
plant families. Parallel to their commercial and 
economic importance, they exhibit an incredible 

range of diversity in size, shape, and color (Fay, 
2018; Phillips et al., 2020; Wraith et al., 2020). In 
addition, orchids are of immense horticultural 
importance because of their roles in the 
ecological equilibrium of forests. Orchid flowers 
have emerged as prominent ornamental plants, in 
cut-flower production and potted plants, which 
fetch high prices in international markets 
(Sanghamitra et al., 2019). Orchids produce a 
large number of very minute and non-
endospermic seeds, thereby limiting the chance of 
seed conversion into plantlets (Figura et al., 
2021). 
Artificial neural networks (ANNs) are defined as 
learning and computing systems based on 
experimental data that imitate some properties of 
neurological processing of the human brain based 
on computational techniques (Safari et al., 2021). 
ANN models can accurately use an unlimited 
number of input and output parameters to attain 
optimal system performance. They are data-
driven, self-adaptive methods and can adaptively 
identify or model complex and nonlinear 
processes, thereby yielding information that can 
be used by another neural network. In addition, 
ANNs can be used as mathematic techniques to 
describe the relation between experiment inputs 
and outputs to statistically predict them in 
various processes. The main parts of each ANN 
structure consist of an input layer, a hidden 
layer(s), and an output layer of neurons (Tracey 
et al., 2011). The set of synaptic weights, the 
connections or architecture, and the transfer 
functions for each neuron determined the 
architecture of ANNs (Singh et al., 2020). Two of 
the more popular feedforward algorithms of ANN 
include multilayer perceptron (MLP) and radial 
basis function (RBF). In some cases, these 
constraints have led to modeling processes based 
on an artificial neural network (ANN). 
Most applications of ANN consist of multilayer 
perceptrons used in deep learning. The basic MLP 
structure unit is a simple model of an artificial 
neuron in which each neuron output is connected 
to every neuron in subsequent layers connected 
in a cascade. All layers of the network are usually 
trained through a backpropagation algorithm to 
compute the weights of the network. By 
transforming input data into a desirable response, 
MLPs can generate approximations of nearly all 
segments of the input-output map and the 
performance of optimal statistical classifiers in 
difficult problems that cannot be analyzed 
linearly (Castejón et al., 2010).  
RBF networks are approximate multivariable 
functions by linear combinations consisting of an 
input layer, a single hidden layer, and an output 
layer. In RBF architecture, there is a connection 
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between each neuron of a layer and all of the 
neurons in the next layer, but not between the 
neurons on the same layer (Kopal et al., 2019). 
RBF applies radial basis functions (non-linear 
Gaussian) and non-linear sigmoid (or linear) 
functions in hidden layer neurons and an output 
layer, respectively. They generally use 
backpropagation functions for learning in the 
hidden layer and may usually be applied to 
approximate functions (Kopal et al., 2019). 
Many studies reported the ability of different 
computational models based on MLP and RBF 
models to predict the changes in the quality 
parameters of crops during different processes 
(Baş and Boyacı, 2007; Mimouni et al., 2009; 
Youssefi et al., 2009). According to previous 
studies, the application of artificial neural 
networks has not been examined to predict 
synthetic seed weight as a critical factor for 
germination in orchids or other plants. The 
objective of this study was to evaluate the 
capability of ANN models (multilayer perceptron 
and RBF) to accurately predict the synthetic seed 
weight in Phalaenopsis orchid plants. Predictor 
variables of the models were sodium alginate 
concentration, calcium chloride concentration, 
and droplet falling height (DFH). The present 
research is part of a broader project aimed at 
investigating the potential of ANNs in predicting 
the physical properties of synthetic seeds. 
Artificial neural networks for weight prediction 
and quality detection of synthetic seeds are a 
suitable tool for the improvement of cultivation 

management and the avoidance of costly field 
surveys. 
 

Materials and Methods 
Explants 
In this study, 2-3 mm protocorms of Phalanopsis 
(cv. ‘Beijing’) were used as an imported potted 
plant with very high ornamental value. These 
samples were utilized for making synthetic seeds. 
Protocorms were produced by seed culture 
(Mahdavi et al., 2018) in the Orchid Breeding and 
Propagation Laboratory, Horticulture 
Department, Aburaihan Campus, University of 
Tehran, Iran. 
 

Encapsulation 
Protocorm encapsulation involved using three 
concentration levels of sodium alginate (3%, 4%, 
and 5% w/v) integrated into three concentrations 
of calcium chloride (100, 125, and 150 mm). A 
simple set-up was utilized to encapsulate 
protocorms of the Phalanopsis orchid (Fig. 1). 
This set-up included an alginate tank, connecting 
tube, flow-regulating pincher, and steel nozzle 
with an internal diameter of 0.38 cm. A perforated 
metal plate had holes 4 mm in diameter. The plate 
was used for creating droplets with suitable 
dimensions to completely cover the protocorm. It 
was placed on a beaker containing calcium 
chloride and a magnetic stirrer-heater was used 
for mixing the capsules into an integrated 
solution. 

 
Fig. 1. a) encapsulation mechanism, b) formed capsules. 
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A single protocorm was placed on a layer of 
sodium alginate which was enclosed in a hole in 
the metal plate. The hole provided a suitable bed 
to fully cover the protocorm and had proper 
dimensions for orchid synthetic seeds. Sodium 
alginate flowed from the tank through a 
connecting tube to the nozzle and fell dropwise 
onto the perforated metal plate (Error! Reference 
source not found.). The capsules formed by 
dropping 2-3 drops into a hole of a metal plate 
containing the alginate layer. The droplet 

containing a protocorm fell into the calcium 

chloride solution, where the ion exchange 
reaction occurred and the capsules solidified. The 
height of the perforated plate from the surface of 
the complexion solution was adjusted by 
changing the volume of the calcium chloride to 
have different DFH values of 1, 1.5, and 2 cm. As a 
result, the performance of this set-up was such 
that the protocorm was positioned in the center 
of the capsules for a better provision of nutrition 
and protection (Fig. 1). 
 

 
Fig. 1. Schematic of encapsulation for Phalanopsis orchid using the encapsulation set-up. 

 

 

Statistical analysis 
In this study, synthetic seeds were placed into 
seven sterile Petri dishes and grouped into blocks, 
each block consisting of 5 samples from each 
treatment. The capsules were regularly weighed 
and the effect of sodium alginate concentration, 
calcium chloride solution, and gel DFH were 
examined on synthetic seed weight, using ANOVA 
by SPSS (version 16.0, SPSS Inc. USA). The mean 
values of treatments were compared using 
Duncan’s Multiple Range Test (DMRT) (P≤0.05). 
 

Modeling 
Two effective feed-forward MLP and RBF neural 
networks were based on backpropagation. They 
were developed using experimental 
measurements to predict the changes in the 
weight values of synthetic seeds during the 
encapsulation process. The predicted values of 

performance for these models among all different 
values of training data were then compared. Fig. 2 
represents a three-layered structure (MLP) that 
consists of 3 input layers, 1-20 hidden layers, and 
1 output layer. The input layer accepts the data 
consisting of sodium alginate concentration, 
calcium chloride concentration, and DFH. The 
hidden layer processes these input data and 
finally the output layer presents the outputs of the 
model, i.e. the synthetic seed weight values. The 
training of RBF and MLP ANNs for the prediction 
of seed weights was implemented using 70% of 
the total data set. Subsequently, 15% of the data 
set was used for testing and the remaining 15% 
was used for validating the ANN performance. 
Data analysis of artificial neural networks was 
performed using STATISTICA 12 software to 
predict the response variable which was 
dependent on three independent variables. To 
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evaluate the quality and reliability of the best 
network architecture, the lowest sum-square 
error (SSE) along with the highest coefficient of 
determination (R) were reported. In addition, the 
operational parameters of both MLP and RBF 

networks were, namely, the variable learning rate 
and tan-hyperbolic (tanh) for network training 
and network activation, respectively. 
 

 

Fig. 2. Schematic depiction of ANN network in the present study. 

 

Results 
Results of ANOVA for capsule weight  
Based on the results ( 
Table 1. Results of ANOVA for capsule weight), the 
analysis of variance showed that the effects of 

DFH and sodium alginate concentration, as well 
as DFH × sucrose, were highly significant on 
synthetic seed weight (p≤0.01). The calcium 
chloride concentration had no significant effect 
on capsule weight. 

 
Table 1. Results of ANOVA for capsule weight 

F value MSE df S.V 

**4.839 0.012 2 DFH 

**41.389 0.104 2 Sodium alginate concentration 

ns1.566 0.004 2 Calcium chloride concentration 

*2.399 0.006 4 
DFH × 

Sodium alginate concentration 

ns1.784 0.005 4 
DFH× 

Calcium chloride concentration 

ns2.223 0.006 4 

Sodium alginate concentration × 

Calcium chloride concentration 

 

ns1.294 0.003 8 
Sodium alginate concentration × 

Calcium chloride concentration × DFH 

 0.003 189 Error 
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  216 
Total 

 

 

Differences between the weight values of artificial 
seeds of Phalaenopsis orchid, as affected by DFH 
× alginate concentration, are shown in plots of 
Fig. 3. As an example, in this plot, there was a 
significant difference among the means of capsule 
weights encapsulated in 4% alginate 
concentration at a DFH of 1.5 cm and those 
encapsulate in 3% alginate concentration with 
the same DFH. Meanwhile, the interaction effects 
of alginate concentration × DFH of 1 (cm) × 5% 
and 1.5 (cm) × 5% were non-significant. The 
error bar associated with each treatment on the 
plot indicated an estimate of the maximum and 
minimum weight of synthetic seeds. The 4% 

sodium alginate level with a DFH of 1.5 cm was 
found to be the most appropriate condition of 
encapsulation for the production of synthetic 
seeds, having maximum weight (0.164 g). These 
capsules were at least twice as heavy as the ones 
with a minimum weight of 0.054 g (encapsulated 
in 3% sodium alginate with a DFH of 2 cm) (Table 
1). In Figure 4, a comparison of means showed a 
decrease in the DFH to the desired level (1.5 cm), 
resulting in a lower falling speed of droplets into 
the CaCl2 solution. Ultimately, this decreased the 
stresses on the capsules and helped increase the 
synthetic seed weight.  

 

 
 

 Fig. 3. Synthetic seed weight as affected by DFH × alginate concentration interaction. 

 
 

Modeling of synthetic seed production 

process using MLP neural networks 
Multilayer perceptron (MLPs) and multilayer 
feedforward neural networks were utilized to 
model the synthetic seed production process. 
Alginate concentration, sodium chloride 
concentration, and DFH were considered as input 
data and the capsule weight was regarded as the 
output data. The model was evaluated based on 
performance indices (R and SSE in any topology) 
for artificial neural networks. In the MLP 
structure, the hyperbolic tangent function and 
identity function were adopted in the hidden and 
output layers, respectively. Table 2 shows the 
results of capsule weight prediction using 
artificial neural networks. 

Results of qualitative analysis of the neural 
models showed that the best network was the 
topology with the 3-17-1 structure, where MLP 
had the lowest SSE (0.14 ×10E-3) and the highest 
correlation coefficient (R) was 0.91. The graph in 
Figure 5 indicated the cross-correlation of the 
predicted and measured values to check the 
prediction performance of the 3-17-1 MLP 
network which is acceptable. As shown in Figure 
5, the best linear fit was indicated by a perfect fit 
(predicted equal to measured) as indicated by the 
red line. The lowest error and highest value of 
correlation coefficient were considered good 
indicators to check the prediction accuracy of 
MLP optimal structure (Fig. 5). To activate the 
hidden and output MLP layers, the hyperbolic 



Mahfeli et al.,                                              Int. J. Hort. Sci. Technol. 2023 10 (4): 463-474 

 

469 

tangent (Tanh) and identical functions were used, 
respectively.  
 
 

 
 
 
 

Table 2. Results of capsule weight prediction using the MLP neural network 

SSE × 10 -3 R 

Topology ( MLP) 

Test Train Test Train 

0.19 0.14 0.99 0.91 3-17-1 

0.28 0.16 0.99 0.90 3-10-1 

0.31 0.24 0.98 0.85 3-20-1 

0.42 0.27 0.96 0.82 3-3-1 

0.54 0.29 0.93 0.81 3-16-1 

 
 

 
Fig. 4. Predicted vs. measured values of seed weight using 3-17-1 MLP neural network. 

 
 
Three-dimensional modeling of the 3-17-1 MLP 
network was used for determining cross-
correlations of the predicted and target values of 
capsule weight based on input parameters 
(alginate concentration interaction, calcium 
chloride concentration, and DFH) (Fig. 6-A, Fig. 6-
B, and Fig. 6-C, respectively). According to the 
results (Fig. 6), the share of each input variable of 
the developed MLP model on the desired output 
(capsule weight) can be seen clearly.  

 

Modeling of synthetic seed production 

processes using RBF neural networks 
In Table 3, several RBF models were developed 
and compared to select the best result based on 
maximal R and minimal SSE for the prediction of 
the capsule weight. The best performance was 
obtained by RBF topology of 3-15-1 with R=0.98 
and SSE=0.13×10E-3, which represented a 
reasonable accuracy. It was found that the RBF 
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neural network presented a more precise model 
than MLP algorithms, thereby providing higher 
accuracy and lower SSE. To activate the hidden 

and output RBF layer, the hyperbolic tangent and 
identical functions were used, respectively. 
 

 
 

A 

 

B 

  

C 

 
Fig. 5. Three-dimensional modeling of 3-17-1 MLP network for a) alginate concentration interaction, b) calcium 

chloride concentration, and c) DFH. 

 
Table 3. Results of capsule weight prediction using the RBF neural network 

SSE × 10 -3 R 

Topology ( RBF) 
Train Test Train Test 

0.17 0.13 0.91 0.98 3-15-1 

0.13 0.58 0.96 0.96 3-11-1 

0.19 0.59 0.98 0.96 3-17-1 
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0.30 0.12 0.97 0.92 3-18-1 

0.15 0.14 0.99 0.91 3-15-1 

 

Figure 7 presents the graphical output provided 
for the RBF models that plotted the predicted 
values (network outputs) versus the measured 
values (targets). As shown in Figure 7, the good 
cross-correlation of the predicted and target 
values indicated that the RBF model was most 
acceptable. RBF was applied to the dataset and 

was able to correctly predict capsule weight, with 
an efficiency rate of 96%. This is considered to be 
an excellent initial performance. However, it can 
be further improved by optimizing the network, 
changing the weights, and increasing the number 
of training datasets. 

 

 
 

Fig. 6. Predicted vs. measured values of seed weight using the 3-15-1 RBF network. 

 
 

To assess the predictive ability and validity of the 
RBF model and predict capsule weight based on 
the input parameters, the assessment involved 
alginate concentration interaction, calcium 
chloride concentration, and DFH (Fig. 8-A, Fig. 8-
B and Fig. 8-C, respectively). Accordingly, 3D 
models were developed using the best network 
selected. A good level of accuracy was observed in 
the 3-15-1 structure, resulting in a much better 
RBF performance than MLP for predicting the 
capsule weight.  
 

Discussion  
The physical properties of synthetic seeds 
affected their quality and performance. It is 
important to monitor these properties and 
predict them during production. This assists in 
optimizing the synthetic seed production process. 
In this study, two artificial neural networks, RBF 

and MLP were applied to model the encapsulation 
process and predict orchid synthetic seed weight. 
The input parameters were alginate 
concentration, sodium chloride concentration, 
and DFH. Meanwhile, synthetic seed (capsule 
weight) was selected as the output parameter. In 
Figure 4, it was revealed that increasing the 
concentration of sodium alginate to the desired 
level, not only prolonged the ion exchange time 
but also affected the quality of synthetic seeds, 
producing heavier capsules with greater 
firmness. The present finding was supported by 
Gantait et al. (2017) who similarly examined the 
effects of sodium alginate and CaCl2.2H2O 
concentration on synthetic seed quality (Gantait 
et al., 2017). The performances of the models 
were compared based on R and SSE indices. Using 
Artificial Neural Network (ANN) for this 
prediction, it was revealed that the optimal 
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network was MLP topology as 3-17-1 with 
R=0.91 and SSE=0.14×10E-3, followed by RBF 
topology as 3-15-1 with R=0.98 and 
SSE=0.13×10E-3. To activate the hidden and 

output layers in both MLP and RBF models, the 
hyperbolic tangent and identical functions were 
utilized, respectively.

 
A 

 

B 

 

C 

 
Fig. 7. Three-dimensional modeling of 3-15-1 RBF network for a) alginate concentration interaction, b) calcium 

chloride concentration, and c) DFH. 

 
Similar results were reported by Tau et al. (2017) 
indicating that an artificial neural network can be 
a powerful tool in determining the correlation of 
measured and predicted variables in modeling 
blueberry anthocyanin extracts through the 
encapsulation process (Tao et al., 2017). 
According to the correlation of the predicted and 
measured values, associated with an optimal 

architecture, it can be said that MLP is a useful 
tool for the prediction of orchid synthetic seed 
capsule weight (Fig. 6). MLP and RBF algorithms 
were used in a similar study to determine the 
safety and integrity of leaf samples. The results 
clearly showed that the RBF Neural Network 
classifier had a better presentation, precision, and 
upgraded detection speed (Sumathi and 
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Karthikeyan, 2021). This study indicated better 
predictive capabilities of the RBF neural network 
to predict and model synthetic seed processing, 
compared to the MLP. In a similar case of research, 
the RBF and MLP techniques were successfully 
applied for the classification of healthy and 
infected tomatoes. The results showed 96% and 
98% accuracy for the classification of healthy, 
powdery mildew (Oidiumly copersicum) and 
spider mite-infected plants, respectively 
(Ghaffari, 2010). The main characteristic of ANN 
models is their learning capacity. ‘Property’ 
means that when using a neural network, there is 
no need to program how the output is obtained, 
given a certain input. Rather, examples are shown 
of the relationship between input and output, and 
the neural network can thus learn the existing 
relationship between them via a learning 
algorithm. Once the neural network has learned 
to carry out the desired function, the input values 
can be entered and the neural network can 
calculate the output. This provides a quick and 
inexpensive method for classifying and predicting 
the characteristics of agricultural products. A 
similar study was conducted to develop an RBF 
neural network for estimating biomass and shoot 
length in plant cell cultures (Zielińska and 
Kępczyńska, 2013).  
 

Conclusion  
The results confirmed the usefulness of RBF to 
predict the growth of plants under different in 
vitro conditions. It is concluded that ANN is a 
useful tool for predicting synthetic seed capsule 
weights and modeling the encapsulation process. 
 
Acknowledgments 
The authors wish to thank Tarbiat Modares 
University, INSF, and Tehran University (College 
of Aburaihan) for the opportunity to carry out this 
research. 
 
Conflict of Interest 
The authors indicate no conflict of interest for this 
work. 
 

References 
Antonietta GM, Ahmad HI, Maurizio M, Alvaro S. 2007. 
Preliminary research on conversion of encapsulated 
somatic embryos of citrus Reticulata blanco, cv. 
'Mandarino tardivo di ciaculli'. Plant Cell, Tissue and 
Organ Culture 88, 117-120. 

Baş D, Boyacı IH. 2007. Modeling and optimization I: 
usability of response surface methodology. Journal of 
Food Engineering 78, 836-845. 

Castejón C, Lara O, García-Prada J. 2010. Automated 
diagnosis of rolling bearings using MRA and neural 

networks. Mechanical Systems and Signal Processing 
24, 289-299. 

Chandra K, Pandey A, Kumar P. 2018. Synthetic seed—

future prospects in crop improvement. International 
Journal of Agricultural Innovation Resources 6, 120-
125. 

Chen WH, Tang CY, Kao YL. 2009. Ploidy doubling by in 
vitro culture of excised protocorms or protocorm-like 
bodies in Phalaenopsis species. Plant Cell, Tissue and 
Organ Culture 98, 229-238. 

Fang SC, Chen JC, Wei MJ. 2016. Protocorms and 
protocorm-like bodies are molecularly distinct from 
zygotic embryonic tissues in Phalaenopsis aphrodite. 
Plant Physiology 171, 2682-2700. 

Fay MF. 2018. Orchid conservation: how can we meet 
the challenges in the twenty-first century? Botanical 
Studies 59, 1-6. 

Figura T, Tylova E, Jersakova J, Vohnik M, Ponert J. 2021. 
Fungal symbionts may modulate nitrate inhibitory 
effect on orchid seed germination. Mycorrhiza 31, 231-
241. 

Gantait S, Kundu S, Ali N, Sahu NC. 2015. Synthetic seed 
production of medicinal plants: a review on the 
influence of explants, encapsulation agent and matrix. 
Acta Physiologiae Plantarum 37, 98. 

Gantait S, Kundu S, Yeasmin L, Ali MN. 2017. Impact of 
differential levels of sodium alginate, calcium chloride, 
and basal media on germination frequency of 
genetically true artificial seeds of Rauvolfia serpentina 
(l.) benth. Ex kurz. Journal of Applied Research on 
Medicinal and Aromatic Plants 4, 75-81. 

Kocak M, Sevindik B, Izgu T, Tutuncu M, Mendi YY. 2019. 
Synthetic seed production of flower bulbs. Pages 283-
299. In Synthetic Seeds. Springer.  

Kopal I, Harničárová M, Valíček J, Krmela J, Lukáč O. 
2019. Radial basis function neural network-based 
modeling of the dynamic thermo-mechanical response 
and damping behavior of thermoplastic elastomer 
systems. Polymers 11, 1074. 

Lee YI, Hsu ST, Yeung EC. 2013. Orchid protocorm‐like 
bodies are somatic embryos. American Journal of 
Botany 100, 2121-2131. 

Magray MM, Wani K, Chatto M, Ummyiah H. 2017. 
Synthetic seed technology. International Journal of 
Current Microbiological Applied Science 6, 662-674. 

Mahdavi Z, Dianati Daylami S, Aliniaeifard S. 2018. 
Protocorms encapsulation of Phalaenopsis hybrids 
(Orchidaceae) in order to schedule in vitro plantlet 
production XXX International Horticultural Congress 
IHC2018: II International Symposium on 
Micropropagation and In Vitro Techniques 1285. 

Mimouni A, Schuck P, Bouhallab S. 2009. Isothermal 
batch crystallization of alpha-lactose: a kinetic model 
combining mutarotation, nucleation and growth steps. 
International Dairy Journal 19, 129-136. 

Oceania C, Doni T, Tikendra L, Nongdam P. 2015. 



Mahfeli et al.,                                              Int. J. Hort. Sci. Technol. 2023 10 (4): 463-474 

 

474 

Establishment of efficient in vitro culture and plantlet 
generation of tomatoes (Lycopersicon esculentum 
mill.) and development of synthetic seeds. Journal of 
Plant Sciences 10, 15. 

Phillips RD, Reiter N, Peakall R. 2020. Orchid 
conservation: from theory to practice. Annals of Botany 
126, 345-362. 

Pradhan S, Tiruwa BL, Subedee BR, Pant B. 2014. 
Micropropagation of Cymbidium aloifolium (l.) sw., a 
medicinal orchid by artificial seeds technology. Journal 
of Natural History Museum 28, 42-48. 

Reddy MC, Murthy KSR, Pullaiah T. 2012. Synthetic 
seeds: a review in agriculture and forestry. African 
Journal of Biotechnology 11, 14254-14275. 

Rihan HZ, Kareem F, El-Mahrouk ME, Fuller MP. 2017. 
Artificial seeds (principle, aspects and applications). 
Agronomy 7, 71. 

Safari A, Babaei F, Farrokhifar M. 2021. A load 
frequency control using a pro-based ANN for micro-
grids in the presence of electric vehicles. International 
Journal of Ambient Energy 42, 688-700. 

Sanghamitra M, Babu JD, Bhagavan B, Kumar VS, Salomi 
D. 2019. Standardization of different potting media on 
physiological growth, yield and vase life of Dendrobium 
orchid cv. 'Sonia 17' under shade net conditions in high 
altitude tribal zones of Andhra Pradesh. Journal of 
Pharmacognosy and Phytochemistry 8, 128-132. 

Singh S, Sarma A, Jao N, Pattnaik A, Lu S, Yang K, 
Sengupta A, Narayanan V, Das CR. 2020. Nebula: a 
neuromorphic spin-based ultra-low power 
architecture for SNNs and ANNs. 2020 ACM/IEEE 47th 
Annual International Symposium on Computer 

Architecture (ISCA) IEEE. 

Siraree A. 2022. Artificial seed technology. Pages 131-
142. In sugar beet cultivation, management and 
processing. Springer. 

Sumathi S, Karthikeyan N. 2021. Detection of 
distributed denial of service using deep learning neural 
network. Journal of Ambient Intelligence and 
Humanized Computing 12, 5943-5953. 

Tao Y, Wang P, Wang J, Wu Y, Han Y, Zhou J. 2017. 
Combining various wall materials for encapsulation of 
blueberry anthocyanin extracts: optimization by 
artificial neural network and genetic algorithm and a 
comprehensive analysis of anthocyanin powder 
properties. Powder Technology 311, 77-87. 

Tracey JA, Zhu J, Crooks KR. 2011. Modeling and 
inference of animal movement using artificial neural 
networks. Environmental and Ecological Statistics 18, 
393-410. 

Wraith J, Norman P, Pickering C. 2020. Orchid 
conservation and research: an analysis of gaps and 
priorities for globally red listed species. Ambio 49, 
1601-1611. 

Yeung EC. 2017. A perspective on orchid seed and 
protocorm development. Botanical Studies 58, 1-14. 

Youssefi S, Emam-Djomeh Z, Mousavi S. 2009. 
Comparison of artificial neural network (ANN) and 
response surface methodology (RSM) in the prediction 
of quality parameters of spray-dried pomegranate 
juice. Drying Technology 27, 910-917. 

Zielińska S, Kępczyńska E. 2013. Neural modeling of 
plant tissue cultures: a review. BioTechnologia. 

 


