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 The current study was aimed to evaluate the physiological properties 

of pear influenced by two dynamics of loading force and the storage 

time. In this experiment, the pears were subjected to dynamic loading 

(300, 350 and 400 g) and different storage periods (5, 10 and 15 d). 

The amounts of fruit total phenol, antioxidant and Vitamin C contents 

were evaluated after each storage period. In the present study, 

multilayer perceptron (MLP) artificial neural network featuring a 

hidden layer and two activating functions (hyperbolic tangent-

sigmoid) and a total number of 5 and 10 neurons in each layer were 

selected for the loading force and storage period so that the amounts 

of the total phenol, antioxidants and Vitamin C contents of the fruits 

could be forecasted. According to the obtained results, the highest R2 

for dynamic loading in a network with 5 neurons in the hidden layer 

and a sigmoid activation function were obtained for total phenol 

content (R2 = 0.980), antioxidant (R2 = 0.983) and Vitamin C (R2 = 

0.930). Additionally, considering the value of Epoch and Run for the 

network, the ability of the neural network to predict total phenol, 

antioxidant and Vitamin C contents can be used. According to the 

obtained results, the neural network with these two activation 

functions possesses an appropriate ability in overlapping and 

predicting the simulated data based on real data. 
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Introduction1 
Researchers have documented that 35% of 
bruises occur during harvest and transportation 
stages. Considerable efforts and costs are made 
and carried to increase products’ performance, 
but the profits gained from the production 
increase are jeopardized due to the use of 
improper handling methods after harvest. This 
resulting in exacerbation of the products’ 
wastage. Inappropriate transportation of fruits 
can cause mechanical damage to them. The 
physical and biological composition of the 
products as well as various sorts of enforced 
loads including static, dynamic, and undulating 
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loads define the outline figure caused by the 
damage. In cases where such a transformation 
exceeds the biological yield limits, the texture 
undergoes color changes within a short period of 
time and the fruit rots so that its ingredients will 
be rendered completely useless. The products 
spoiled during storage can also endanger the 
healthy materials in contact with them (Sitkei, 
1987). Being subject to contact stresses under 
static, quasi-static and stroke loads, the 
mechanical damage in various kinds of fruits and 
vegetables causes a reduction in the product 
quality and its economic value. Bruises in fruits 
are defined as textural break in the vicinity of 
their surfaces under compressive or impact 
loads. The preliminary effect of the compressive 
forces imposed on fruits is exerted on the 

http://ijhst.ut.ac.ir/
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membrane system of the cells constituting the 
flesh. One important role of the membrane is to 
isolate the intracellular liquid parts. The 
membrane is damaged by the injury in a part of 
the plant following which the plant cannot 
perform its duty. Subsequently, damage can 
cause the mixing of the enzymes extant in 
cytoplasm with (phenolic) molecules existing 
inside the vacuoles; this per se can lead to 
creation of brownish stains on the fruit surface, 
which are called bruise (Babic et al., 2012; Opara 
and Pathare, 2014; Stropek and Gołacki, 2015). 
In addition, some researchers had reported that 
as a result of the effects of lower force, the fruit 
may not change, but significant bruising occurs 
when the fruit is physically damaged by impact 
during storage. Furthermore, the physical 
evidence suggests cell breakage and color 
change in the fruit of interest occurring when the 
individual cells become subjected to pressure in 
their cell walls, and they finally break and this 
causes a change of color in the intended part 
(Opara and Pathare, 2014). The major reason for 
such mechanical damage (bruise) waste is 
impacted that can created from shaking or 
abrupt falling from various heights. In recent 
years, numerous studies have been conducted to 
evaluate the mechanical properties and bruise-
sensitivity of the fruits and vegetables in which 
the bruise has been attributed to friction and 
pressure of a product with and on another 
adjacent product, packaging containers, and 
processing equipment parts and tree (Idah et al., 
2007) 
Artificial neural network (ANN) seems 
extremely appropriate to investigate and 
simulate the data. ANN is, in fact, a collection of 
mathematical methods, including artificial 
intelligence, and it attempts somehow to imitate 
the human brain. During the past two decades, 
the neural network has exhibited considerable 
potential in various science and engineering 
areas for its exceptional performance, internal 
organization and self-learning, overcoming the 
challenges and high solidity rate. Recently, there 
has been an increase in utilizing neural networks 
as a modeling tool in agriculture and food 
industry technologies. Neural networks have 
been successfully employed in several foodstuff 
processing technologies such as drying, post-
harvest technologies, rheology of the foodstuff, 
microbial predictions, fermentation, and thermal 
processing (Lu et al., 2010). Artificial neural 
networks are also considered the most effective 
tools to process a large volume of information 
that was once a major challenge in various 
respects. The development trend of neural 
networks is suggestive of the importance of 

using them for information processing, since 
they have been proved to be highly successful in 
data analysis and they have been capable of 
undergoing development in various grounds. 
Moreover, the use of neural networks is 
promising in food production and foodstuff 
quality processing and evaluation methods 
wherein old methods of data processing might 
not provide us with accurate information or be 
substantially costly. Two important capabilities 
of neural networks, on wit prediction and 
classification scales, have drawn considerable 
attention. According to the internal 
competencies of artificial neural networks, they 
can be successfully applied in the agriculture 

sector )Hosu et al., 2014). 
Many researchers have conducted studies in this 
regard. For instance, Lu et al. (2010) used ANN 
to estimate ascorbic acid, total phenol, 
flavonoids and antioxidants in asparagus. In 
these experiments, they employed a neural 
network with a hidden layer and varying 
numbers of neurons in the hidden layer, and it 
was found that the determination coefficient 
ranges between 0.8166 and 0.9868 for the 
neural network between the input and simulated 
data. Moreover, the quantity of the asparagus 
constitutes is assessed by the significant abilities 

of the neural network )Lu et al., 2010(. Cheok et 

al. (2012) in one study on extracting the total 
phenol contents of Garcinia mangostana L. using 
ANN reported that the analysis through taking 
advantage of ANN predicted data with a 
determination coefficient equal to 0.945 and a 
mean absolute deviation (MAD) equal to 4.01% 
in the response surface methodology (RSM). The 
findings of the survey introduced ANN as a 
superior technique in modeling nonlinear data to 
estimate the total content of phenol (Cheok et al., 

2012(. Guiné et al. 2015 utilized ANN-based 

modeling to investigate phenol and antioxidant 
contents of bananas, and the results indicated 
that the ANN-based method exhibited a high 
accuracy rate in predicting the fruits’ contents of 

phenol and antioxidants )Guiné et al., 2015(. 

Taghaddomi-Saberi et al. (2014) investigated the 
potentials of neuro-fuzzy and ANN techniques in 
order to evaluate the antioxidant activity of 
ripened sweet cherry products and reported that 
the determination coefficients were 0.93 and 
0.87 for ANN and neuro-fuzzy techniques, 
respectively. Based on the obtained results, they 
also reported that both of these networks 
presented considerable potential in property 

prediction (Taghadomi-Saberi et al., 2014( 

Subsequent to the loading, the total content of 
phenol, vitamin C, and antioxidants were 
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evaluated. Each of them has separate treatments. 
Loading and storage are dependent factors and 
the rest are independent factors. The 
susceptibility of fruits, especially the pear, to the 
impact and the changes in its qualitative 
properties, required more attention than before. 
Therefore, the objective of the present study was 
to investigate the ability of ANN in predicting the 
biochemical characteristics of pears subject to 
dynamic loading and during various storage 
periods. The study also evaluated the sensitivity 
of the studied traits subjected to loads and 
storage periods.  

Materials and Methods 
Sample preparation 
The pears )Spadana variety) were purchased 
from the markets of Gorgan, Golestan province, 
Iran. Subsequently, the obtained samples were 
transferred to the laboratory of Gorgan 
University of Agricultural Sciences and Natural 

Resources. They were kept in an oven at 103 ℃ 
for 16 h, and their moisture contents were 
measured. Environmental conditions for testing 
was conducted at a temperature of 18 °C and 
relative humidity of 72%. 

Impact test 
First, the pendulum and the required masses 
were made in a workshop in Gorgan Biosystem 
Mechanics Group (Fig. 1). The fruits in this 
experiment were appropriately positioned and 
the arm of the device was fixed at a 90° angle as 
well. Consequently, the pear was hit by the arm 
of the device in the provided circumstances. The 
pendulum had a 200-gram arm, and three 
different attachment masses of 100, 150, and 
200 g for knocking. It should be noted that air 
resistance and friction were neglected through 
this procedure. Figure 2 shows the pears after 
each loading and storage. 

 

Fig. 1. Schematic of the impact machine 
A: Pendulum at a 90 degree angle; B: Walking along the path; C: Collapse pendulum to pear; D: Main device profile; E: 

Place the pear; F: Pendulum blow; G: the base of the device. 
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Fig. 2. pear picture after loading and storage period 

Vitamin C 
The 2 and 6-dichlorophenol indophenol titration 
method was used to estimate vitamin C. To do so, 
the contents were combined and subsequently 
extracted by citric acid in the first place. Then, 
the filtered extract was picked up and mixed 

with citric acid and subjected to titration using 
2,6-dichlorophenol indophenol reagent. The 
termination point of titration was the 
appearance of a pale purple that lasted for about 
15 s. Vitamin C amount was obtained by the 
following equation (Tavarini et al., 2008):

 

          
                                                  

                                                  10  2
 

(1) 
 

 

 

Biochemical properties measurement 
To measure the total phenol content and the 
percentage of free radicals’ neutralization, 
specimens equal to 0.5 g of each sample’s wet 
callus was ground and homogenized using 5 
milliliters of methanol 80% (at 1:10 ratio) in a 
cold mortar. The obtained mixture in 
homogenized form was centrifuged at 3000 rpm 
for 5 min after incubation in a dark room for 24 
h on a shaker device. The upper part of the 
extract was used to measure the biochemical 
characteristics. For measuring total phenol 
content amount using folin-ciocalteu (f-c) 
reaction and in this experiment, the percentage 
of DPPH free radicals neutralization was 

measured based on the method proposed by 
Bandet et al. (Jaramillo-Flores et al., 2003; Li et 
al., 2012). 

Artificial neural network modeling 
In this research, the artificial multilayer 
perceptron (MLP) neural network was used to 
model and investigate pear components during 
storage and impact loading to predict total 
phenol content, antioxidant and Vitamin C by 
one hidden layer and 5 and 10 neurons using the 
Neuro Solution 5 software. For the input and 
output layer in hidden form, the activation 
function of hyperbolic tangent and sigmoid 
(Equation 3 and 4) was conducted as the most 
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common activation functions. In this paper, the 
Levenberg-Marquardt algorithm was used to 
learn the network (Taheri-Garavand et al., 
2018). Additionally, 70% of the data were used 
for training, 10% of them were used for network 
evaluation (Validating Data), and 20% of the 
data were used for testing the network (Testing 
data) (Table 1). Before training the model, the 
input-output parameters in data sets were 
arranged, and the inputs in the data set were 
normalized between 0 and 1 range - using the 
equation. Because of the output layer activation 
function is linear (purlin) in all architectures; 
only the input parameters were normalized by 
Eq. (2). The impact loading value (27 data) and 
storage time (27 data) as network inputs Total 
phenol content, antioxidant and Vitamin C (27 
data for each component) were the considered 
network outputs (Fig. 3) and for the network 
was set up separately for each parameter. A total 
of 5 repetitions were considered to achieve the 
minimum error rate and maximum network 

stability as a mean of 2000 Epoch for the 
network. The error was estimated using an 
algorithm with back propagation error. 
Statistical parameters, including, Root Mean 
Square Error (RMSE), R2, and Mean Absolute 
Error (MAE) were calculated for inputs, and the 
relationships were calculated using the formulas 

shown in Table 2. This experiment was 
performed with a number of different neuron 
values, but they were not suitable, and in fact 
these values were better than the values 
obtained from analyses, and the rest of the 
values obtained from these values were not 
more appropriate, hence the two values of the 
neuron were reported. 

min

max min
norm

I I
I

I I





 (2) 

In Equation 2, Inorm is the normalized data, I is 
the measured data, Imin is the least measured and 
Imax is the most measured data. 

Table 1. Neural Network relationships 

Reference Formula Number Formula 

(Soleimanzadeh et al., 2015) (3) Tanh = 
       

       
  

Salehi et al., 2017; Azadbakht et al., 2018b)) (4) Sig=
 

      
 

(Azadbakht et al., 2016) (5) R2 = 1- 
∑ )     )

  
   

)    )
 

 

Salehi and Razavi, 2012;Azadbakht et al., 2018a)) (6) r = √1  
∑ )     )

  
   

)    )
 

 

(Khoshnevisan et al., 2013) (7) RMSE = √∑
)     )

 

 
 
    

(Azadbakht et al., 2017) (8) MAE = 
∑ |     |
 
   

 
 

RSME: Root Mean Square Error, MAE: Mean absolute error Sig:Sigmoid Tanh: Tangent Hyperbolic 
 

 

Fig. 3. Neural Network Input and Output Schematic 
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Table 2. Optimization values for artificial neural network parameters 

Number of hidden 

layers 
Learning rule 

Type of activation 

function 

The number of hidden 

layer neurons 

Testing 

data % 

Validating 

data % 

Training 

data % 

1 
Levenberg 

Marquardt 

Hyperbolic tangent 

and  
5 20% 10% 70% 

1 
Levenberg 

Marquardt 

Hyperbolic tangent 

and  
10 20% 10% 70% 

1 
Levenberg 

Marquardt 
sigmoid 5 20% 10% 70% 

1 
Levenberg 

Marquardt 
sigmoid 10 20% 10% 70% 

Results  
To predict the total phenol content, antioxidant 
and Vitamin C, a multi-layered perceptron (MLP) 
neural network model was used. In this regard, 
the network input included the storage period 
and the impact loading, and the network output 
was comprised of vitamin C as well as the 
antioxidant and total phenol content. As lower 
error value was obtained using the hyperbolic 
tangent and sigmoid activation function, this 
type of function was selected as the activation 
function in the hidden layer and the output. 
Based on the test method, 70% of the data were 
used for training and the network could learn 
the relationships between inputs and outputs 
well and 20 % of the data were used to test the 
network and 10 % of the data were used to Cross 
Validation network. Table 3 presents the value of 

mean squared error, normalized mean squared 
error, mean absolute error, and correlation 
coefficient. Also the moisture content of the 
pears was calculated to be 77.92%. 
The results show that neural network had 5 
neurons in the hidden layer, and Sigmoid 
activation function for Total Phenol Content (R2 
= 0.960), Antioxidant (R2 = 0.966) and Vitamin 
C (R2 = 0.865) could predict Total Phenol 
Content Antioxidant and Vitamin C in different 
impact loading and storage time (Table 3). 
Furthermore, MAE and RMSE of training data 
were evaluated in a lower quantity in 5 neurons 
in the hidden layer and the activation function of 
Sigmoid  concerning the total content of phenol 
(RMSE=0.989–MAE=0.853), Vitamin C 
(RMSE=0.241–MAE=0.185), and antioxidant 
(RMSE=1.379 –MAE=1.044).  

Table 3. Error values for the impact (thin edge) in predicting experimental data using optimal  
artificial neural network 

 

Activation function Neuron number 
MSE RMSE MAE R2 

T
o

ta
l P

h
e
n

o
l 

C
o

n
te

n
t 

Training Test Training Test Training Test Training Test 

hyperbolic tangent 
5 2.160 2.999 1.470 1.732 1.158 1.547 0.927 0.848 

10 2.395 6.385 1.548 2.527 1.258 2.184 0.912 0.986 

Sigmoid 
5 0.978 1.640 0.989 1.280 0.853 1.028 0.960 0.929 

10 1.970 1.030 1.404 1.015 1.163 0.804 0.937 0.943 

A
n

tio
x

id
a

n
t 

hyperbolic tangent 
5 5.101 7.120 2.259 2.668 1.924 2.412 0.939 0.841 

10 13.170 16.178 3.629 4.022 2.928 3.449 0.704 0.929 

Sigmoid 
5 1.901 9.383 1.379 3.063 1.044 2.621 0.966 0.518 

10 4.362 6.538 2.088 2.557 1.709 2.178 0.906 0.897 

V
ita

m
in

 C
 

hyperbolic tangent 
5 0.131 0.242 0.362 0.491 0.283 0.437 0.790 0.123 

10 0.357 0.415 0.597 0.644 0.517 0.591 0.348 0.645 

Sigmoid 
5 0.058 0.104 0.241 0.323 0.185 0.291 0.865 0.723 

10 0.092 0.099 0.304 0.314 0.236 0.255 0.839 0.799 

MAE: Mean absolute error  MSE: Mean Square Error  RMSE: Root Mean Square Error 
 

 
The most proper network identified between the 
network simulated data of each individual 
hidden layer neurons and the input data is 
demonstrated in Table 4. The lower value of 
Epoch indicates that the number of neurons in 
the layer has been able to learn from the neural 
network compared to another number of 

neurons. As Table 4 shows, the best network for 
Total Phenol Content at Training (Run = 1, 
Epoch = 17) in the 10-neuron state in the hidden 
layer and hyperbolic tangent activation function 
reaches a constant value after approximately 17 
Epoch of error, and the best network for 
Antioxidant Training (Run = 1, Epoch = 16) in 
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10-neuron state in the hidden layer and 
hyperbolic tangent activation function. For 
Vitamin C of Training value (Run = 1, Epoch = 
29), it was found in 10-neuron state in the 

hidden layer and hyperbolic tangent activation 
function. The networks indicated that the 
number run for networks learning and training 
was lower. 

Table 4. Some of the best MLP neural network topologies to predict training values 

 

Activation function Neuron number 
Run Epoch 

T
o
ta

l P
h

e
n

o
l C

o
n

te
n

t 

Training Cross Validation Training Cross Validation 

hyperbolic tangent 
5 2 4 563 67 

10 1 3 17 12 

Sigmoid 
5 1 5 150 16 

10 1 2 66 13 

A
n

tio
x
id

a
n

t 

hyperbolic tangent 
5 1 4 101 6 

10 1 5 16 5 

Sigmoid 
5 1 1 96 22 

10 1 5 55 32 

V
ita

m
in

-C
 

hyperbolic tangent 
5 1 2 161 30 

10 1 2 29 6 

Sigmoid 
5 1 4 151 27 

10 1 3 50 7 

 
 
In addition, Figure 4 illustrates the output 
amounts between the real and predicted data. 
According to the figure introducing the neural 
network as a proper method in estimation and 
comparison of the provided data, therefore, it is 
also compatible to estimate the output data of 

ANN, since these numbers are similar to actual 
data. Moreover, considering the R2 rates, the 
network with sigmoid activation function 
featuring 5 neurons in the hidden layer (Fig. 4-C) 
presents the best overlap with the real data. 
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Fig. 4. Compare actual data with network output data for phenol, antioxidant and Vitamin C content in four networks 



Azadbakht, Vahedi Torshizi, Mahmoodi and Abbaszadeh-Mayvan Int. J. Hort. Sci. Technol. 2022 9(3): 275-289 

283 

Figure 5 shows the results of the sensitivity 
analysis for Total Phenol Content. Based on this 
figure, the highest sensitivity for training data 
was obtained for the impact loading in the 
hidden layers with 5 neurons and hyperbolic 
tangent activation and for storage was obtained 
in hidden layers with 10 neurons and hyperbolic 
tangent activation (Fig. 5-A). The highest 
sensitivity of the network was obtained from the 
hyperbolic activation function. In total, for Total 
Phenol Content, the storage sensitivity analysis 
was more than the impact loading sensitivity 
analysis. The reason for this can be justified by 
the fact that by creating stress (impact) in pears 
and causing internal damage to the fruit, some of 
the enzymes are released to repair the damaged 

tissue and reduce the activity of the fruit, causing 
them to be decreased. Moreover, Fig. 5 shows 
the sensitivity analysis for Test and Cross 
Validation data. According to the figure, the 
highest sensitivity for Test and cross validation 
data was obtained for impact loading in the 
hidden layers with 5 neurons by sigmoid 
activation (Test) and 5 neurons in hyperbolic 
tangent activation (Cross validation) (Fig. 5-A). 
Additionally, the highest sensitivity for Test and 
cross validation data was obtained for the 
storage in the hidden layers with 5 neurons 
(Test) and 5 neurons (Cross validation) in 
hyperbolic tangent and sigmoid activation (Fig. 
5-B). 

 

 

 
Fig. 5. Sensitivity coefficient for total phenol content in training, test and cross validation data for each networks:  

A: Loading B: Storage time 
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Figure 6 shows the results of the sensitivity 
analysis for Antioxidant. Based on Fig. 6, the 
highest sensitivity for the training data was 
obtained for the loading in the hidden layers 
with 5 neurons and hyperbolic tangent 
activation function and for storage period was 
obtained in hidden layers with 5 neurons and 
sigmoid activation function (Fig. 6-A). 
Furthermore, Fig. 5 presents the sensitivity 
analysis for Test and Cross Validation data. 
According to this figure, the highest sensitivity 

for Test and cross validation data was obtained 
for impact loading in the hidden layers with 5 
neurons by hyperbolic tangent activation (Test 
and Cross validation) (Fig. 6-A). The figure (6-B) 
illustrates the highest sensitivity of data in 
regard to the Test and cross-validation of the 
storage of the hidden layers for activation 
function of hyperbolic tangent including 5 
neurons (Test) as well as activation function 
related to sigmoid with 10 neurons (Cross-
validation). 

 

 

 
Fig. 6. Sensitivity coefficient for antioxidant in training, test and cross validation data for each networks:  

A: Loading B: Storage time 

 
Figure 7 shows the results of the sensitivity 
analysis for Vitamin C. Based on this figure, the 
highest sensitivity for the training data was 

obtained for the loading in the hidden layers 
with 7 neurons and hyperbolic tangent 
activation function, and for storage, it was 
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obtained in hidden layers with 10 neurons and 
hyperbolic tangent activation function (Fig. 7-A). 
Fig. 5 shows the sensitivity analysis for test and 
Cross Validation data. The highest sensitivity of 
the data extracted from the Test and cross 
validation was related to the impact loading of 
the hidden layers including 5 neurons using 

hyperbolic tangent activation (Test and Cross-
validation) (Fig. 7-A). In addition, the highest 
sensitivity for Test and cross validation data was 
obtained for the storage in the hidden layers 
with 10 neurons in hyperbolic tangent activation 
function (Test and Cross validation) (Fig. 7-B).  

 

 

Fig. 7. Sensitivity coefficient for Vitamin C in training, test and cross validation data for each networks:  
A: Loading B: Storage time 

The predicted values or outputs of the neural 
network versus the measured data (target) for 
total phenol content, anti-oxidant and Vitamin C 
are shown in Figure 8, 9 and 10. According 
Figure 8, between all networks for phenol 
content, the best value was in the netweork by 5 
neuron in  tagent hyperbolic activation function, 
the R2 value for this network was 0.954 that had 
been showed in Fig. 8-B, Also the others R2 were 
0.944 (Fig. 8 –C) 0.942 (Fig. 8-A) and 0.921 (Fig. 
8-D) respectivelity. The R2 values for antioxidant 
content had showed in Fig. 9 and for antioxidant 

content, the best value for  R2 was in network by 
5 neuron in sigmoid activation function by the 
amount 0.969 (Fig. 9-D). For others higher R2 
value than Fig. 9-D were 0.959 (Fig. 9-A), 0.926 
(Fig. 9-B) and 0.904 (Fig. 9-C). At finally for 
Vitamin C, the best R2 value was 0.851(Fig. 10-D) 
at network by 5 neuron in sigmoid activation 
function and after this network, the higher value 
was 0.848 (Fig. 10-C), 0.773 (Fig. 10-B) and 
0.725 (Fig. 10-A). 
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Fig. 8. Prediction of ANN and experimental values for phenol content in different networks 

 

 

Fig. 9. Prediction of ANN and experimental values for antioxidant content in different networks 
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Fig. 10. Prediction of ANN and experimental values for Vitamin C in different networks 

Discussion 
The findings of the test data in this survey 
demonstrated the highest amount of MAE and 
RMSE as the neural network including 10 
neurons in the hidden layer and activation 
function of sigmoid related to vitamin C, 
antioxidants, and the total content of phenol. 
Moreover, for R2

train in neural network, the 
highest R2 value was observed in networks with 
5 neuron and sigmoid activation function for 
total phenol content and antioxidant and for 
Vitamin C. Lu et al. (2010) used neural networks 
to estimate the losses of ascorbic acid, total 
phenols, flavonoid, and antioxidant activity in 
asparagus during thermal treatments, and 
concluded that the predicted values of the 
correlation coefficients between experimental 
and ANNs ranged from 0.8166 to 0.9868. 
Therefore, ANNs could be potential tools to 
predict nutrient losses in vegetables during 

thermal treatments )Lu et al., 2010). Buciński et 
al. (2004) used artificial neural networks to 
predict antioxidant capacity of cruciferous 
sprouts and stated the ANN seemed to find 
application in the quality analysis of functional 
properties of food of plant origin for the predict 
the trolox equivalent antioxidant capacity 
)Buciński et al., 2004). Guiné et al. (2015), using 
artificial neural network, modeled the 
antioxidant activity and phenolic compounds of 

bananas and neural network experiments, and 
showed that antioxidant activity and phenolic 
compounds could be predicted accurately from 
the input variables(Guiné et al., 2015). 
To confirm the output and target data with the 
aim of checking the network responses in detail, 
the regression analysis was conducted. The 
results showed that the model produced for the 
total phenol content and antioxidants had a 
sufficient accuracy in predicting, but for Vitamin 
C, there was not good value for the network with 
the hyperbolic tangent activation function, also 
the values obtained in the network formed by the 
sigmoid activation function are a bit more 
acceptable. The predicted values or outputs of the 
neural network versus the measured data (target) 
for total phenol content, antioxidant and Vitamin 
C are shown in Figures 8, 9 and 10. Regression 
coefficient (R2), optimum model for total phenol 
content, antioxidant and Vitamin C were 0.954, 
0.9691 and 0.8514, respectively. In total, the 
neural network has been able to produce good 
results. Eftekhari et al. (2018) reported good R2 
values using the artificial neural network on 
Grapevine (Vitis vinifera) Foliar Wastes. Also 
Cerit et al. (2017) performed on the amount of 
food composition using the experimental neural 
network, which reported that the obtained R2 
value was 0.9883, which is a good value for 
estimation using the neural network. (Cerit et al., 
2017; Eftekhari et al., 2018). 
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Conclusion 
According to the values obtained for the 
determination coefficient (R2), ANN has been 
able to better estimate the wide-edge loading 
determination coefficient as compared to the 
thin-edge loading determination coefficient and 
this is indicative of the idea that the ANN offers 
better abilities for the higher loading forces. The 
lower amount of RMSE and MAE related to the 
wide-edge loading in comparison to the thin-
edge loading was estimated using ANN, 
therefore, ANN was determined as a better fit to 
estimate the higher loading force. According to 
the wide-edge loading force, the contents of 
phenol, vitamin C, and antioxidants had R2 
values of more than 0.90, as the acceptability 
indicator of the network. According to the results 
obtained for wide-edge and thin-edge loading,  
 

the network with 10 neurons in the hidden layer 
and a sigmoid activation function can be 
accompanied with the best performance. The 
simulation figures of the network illustrate the 
appropriate overlap of the actual data and the 
simulated data. The sensitivity coefficient 
obtained in training for wide-edge loading forces 
and storage periods in 5 and 10-neuron states of 
the hidden layer featuring a hyperbolic tangent 
activation function and 10-neuron state of the 
hidden layer with sigmoid activation function 
was higher than what was calculated for thin-
edge loading. 
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