Influences of Brassinosteroids and Hot Water on Postharvest Enzyme Activity and Lipid Peroxidation of Lime (Citrus aurantifolia L.) Fruit During Storage at Cold Temperature

Soheila MohammadRezakhani¹* and Zahra Pakkish²

1. Horticulture PhD student, Department of Horticultural Science, Faculty Agriculture, University of Tabriz, East Azerbaijan, Iran
2. Assistant professor, Horticultural Research Institute, Shahid Bahonar University of Kerman, Iran

(Received: 15 May 2016, Accepted: 14 April 2017)

Abstract

Storage of Lime (Citrus aurantifolia L.) fruits, originally a tropical fruits, in low temperature confronts with several difficulties due to the risk of chilling injury (CI). To develop an effective method aiming to reduce CI, the effects of treatments containing 0, 0.5 and 1 Mg/lit brassinosteroids (BRs) and hot water (HW) including 20°C as control, 45 and 55°C for 30 minute on CI was studied. Moreover lipid peroxidation, hydrogen peroxide, catalase (CAT) and peroxidase (POD) activities were investigated in lime fruits stored at 1°C for 21 days. The CI, lipid peroxidation, hydrogen peroxide were significantly reduced by BRs treatment particularly at 1Mg/lit and 45°C HW treatment. Furthermore fruits treated with 1Mg/lit BRs and 45°C HW treatment exhibited significantly higher CAT and POD activities in comparison with the control fruits. These results suggest that BRs and HW treatment protect lime fruits from CI by enhancing antioxidant enzymes such as POD and CAT activities, and reduce lipid peroxidation, hydrogen peroxide contents, and maintaining membrane integrity.

Keywords: Brassinosteroid, Chilling injury, Enzyme activity, HW, Storage

Abbreviations: BRs, Brassinosteroids, CI, Chilling injury, Catalase, CAT, Peroxidase, POD, HW, Hot water; Mg/lit, Milligram per Liter

Introduction

Citrus aurantifolia is an important medicinal and food plant widely cultivated in many parts of the world (Enejoh et al., 2015). In order to extend its commercial life, it is usually harvested at mature stage and stored at low temperatures. Storage of limes as an originally subtropical fruits at low temperature is limited by the risk of chilling injury (CI). Postharvest longevity of some fruits is also limited by physiological disorders especially CI. Pre-storage heat treatments have been shown to effectively reduce the CI susceptibility in Citrus (Porat et al., 2000), persimmon (Lay-Yee et al., 1997), peach (Candir et al., 2008) and plum (Abu-Kpawoh et al., 2002). Heat treatments are physical methods for controlling insects, preventing pathogenic infection, improving resistance against CI, delaying maturity and extending shelf life after harvest (Civello et
Brassinosteroids (BRs) are a group of plant steroids that play vital role in plant growth and development and tolerance to biotic and abiotic stresses, such as cold stress (Yu et al., 2002; Fariduddin et al., 2011), salt injury (Ozdemir et al., 2004), pathogen infection (Nakashita et al., 2003), oxidative damage (Cao et al., 2005) and heat stress (Ogweno et al., 2008). Zhu et al. (2010) reported that the application of 5Mm BRs, reduced postharvest decay caused by Penicillium expansum in jujube fruit and delayed fruit senescence by inhibiting ethylene production and respiration rate. The potential of BRs to enhance chilling tolerance of plants has also been investigated. BRs have been shown to have protective effects on eggplant, cucumber, maize and rice seedlings under chilling stress (Mandava, 1988; He et al., 1991; Hotta et al., 1998). Wang and Zeng (1993) reported that the treatment of rice seedlings with BRs led to an increase in chilling tolerance through inducing effects on membrane stability. Liu et al. (2009) reported that BRs treatment promoted the activities of antioxidant enzymes and increased the contents of ascorbic acid and reduced glutathione under chilling stress, thus scavenging excess reactive oxygen species (ROS) accumulation and decreasing the content of lipid peroxidation and hydrogen peroxide. These findings indicate that BRs are capable of alleviating oxidative injury and improving the resistance of cells against chilling stress. The antioxidant enzymes activation could be considered for potential applications for enhancing defense mechanism against chilling. As it resulted in lower cold-induced peel damage in mandarin fruit (Lafuente et al., 2004). POD and CAT are key enzymes in the metabolism of free radical that has been reported to protect plants against stress conditions. However, to our knowledge, the effects of BRs application on postharvest CI in fruits is still under debate (Li et al., 2012).

In this study we aimed to find the effect of BRs and HW applications on protection against the CI and quality losses during storage and to determine antioxidant activity of enzymes following chemical treatments of lime (Citrus aurantifolia L.) fruit.

Materials and methods

Plant materials and treatments

Lime (Citrus aurantifolia L.) fruits were harvested at full maturity stage from a commercial orchard at Jiroft (Kerman Province, Iran) on 20 March, 2012 and transported to laboratory of shahid bahonar university of kerman. Fruit with unique size and color, and without mechanical and pathogen damages were selected and treated with 0 (control), 0.5 and 1Mg/lit brassinosteroids for 5min and 20°C (control), 45°C and 55°C HW for 20 min and were stored at 5±1°C, 85-90 % relative humidity for 21 days. Treated fruits used for determination of visible CI symptoms, POD and CAT activities, lipid peroxidation and hydrogen peroxide content.

CI

The symptoms of CI include surface pitting and browning. The decay and CI index was determined according to the method.
Influences of brassinosteroid and Hot Water on …

Described by Obenland et al. (2009). Grade levels were classified as: grade 0, the unaffected orange fruits; grade 1, CI symptoms on the fruit with decay of less than 25%; grade 2, CI symptoms on the fruit with decay of 25–50%; and grade 3, more than 50% decay and CI symptoms on fruits. The decay and CI index is calculated using the following formula: decay and CI index (%) = (decay and CI Grade x number of fruit at this level) / (highest level x total fruit number) x 100.

Estimation of lipid peroxidation
Lipid peroxidation was estimated by determining the malondialdehyde (MDA) content in the lime fruit according to method of Heath and Packer (1968); A hundred milligram of fruit samples was homogenized in 5 ml of 0.1% trichloroacetic acid (TCA). The homogenate was centrifuged at 10 000 g for 5 min at 4°C. Aliquot of 0.3 ml supernatant was mixed with 1.2 ml 0.5% thiobarbituric acid (TBA) prepared in TCA 20%, and incubated at 95°C for 30 min. After incubating the reaction in an ice bath for 5 min, samples were centrifuged at 10 000 g for 10 min at 25°C. The supernatant absorbance at 532 nm was then measured using a Beckman UV-DU 520 spectrophotometer (USA). After subtracting the non-specific absorbance at 600 nm, MDA concentration was determined using the 155 mM⁻¹ cm⁻¹ extinction coefficient.

Hydrogen peroxide assay
The assay for H₂O₂ content was carried out by the procedure described by Velikova et al. (2000). Fresh tissues (2 g) were homogenized with 10 ml of acetone at 0°C. After centrifugation for 15 min at 6000 g at 4°C, the supernatant phase was collected and mixed with 0.1 ml of 5% titanium sulphate and 0.2 ml ammonia, and then centrifuged for 10 min at 6000 g and 4°C. The pellets were dissolved in 3 ml of 10% (v/v) H₂SO₄ and centrifuged for 10 min at 5000 g. Absorbance of the supernatant phase was measured at 410 nm. H₂O₂ content was calculated using H₂O₂ as a standard and recorded as µmol/g on fresh weight basis (Velikova et al., 2000).

Assays of enzyme activity
POD activity was assayed according to Kochba et al. (1977), The POD reaction solution (3 ml) contains 20 mmol/l phosphate buffer (pH 6.0), 20 mmol/l guaiacol, 40 mmol/l H₂O₂, and 40µl enzyme extract. One unit of activity was defined as the amount of enzyme required to increase 1 absorbance unit in the optical density at 470 nm Min⁻¹. Protein content in the enzyme extract was estimated using the Bradford (1976) method. Specific activity of the enzyme was expressed as units per mg protein.

CAT activity
The activity of CAT was assayed according to Beers and Sizer (1952). Fresh samples (200 mg) were homogenized in 5 ml of 50 mM Tris-NaOH buffer (pH 8.0) containing 0.5 mM EDTA, 2% (w/v) PVP and 0.5% (v/v) Triton X-100. The homogenate was centrifuged at 22 000 g for 10 min at 4 °C and after dialysis supernatant was used for enzyme assay. Assay mixture in a total volume of 1.5 ml contained 1000 ml of 100 mM KH₂PO₄ buffer (pH 7.0), 400 ml of 200 mM H₂O₂ and 100 ml enzyme. The decomposition of H₂O₂ was followed at 240 nm (extinction coefficient of 0.036 mM⁻¹ cm⁻¹) by decrease in absorbance. Specific activity of the enzyme was expressed as units per mg protein.

Statistical analysis
The experimental design was a completely randomized design with three replications. Data were analyzed by analysis of variance (ANOVA) and the means were compared (p≤0.05) by Duncan’s multiple range test (DMRT). All analyses were performed by using SAS version.

Results and discussion
Slight CI symptoms appeared after 7 days in control fruits, and continued to progress
over time. CI is a major factor that reduces quality and limits lime fruit storage longevity. In this study, the plant hormone BRs was applied and significantly reduced postharvest CI in lime fruits (Fig. 1). Our results were consistent with previous reports that BRs could protect seedlings of eggplant, cucumber, maize and rice against chilling stress (Mandava, 1988; He et al., 1991; Hotta et al., 1998). Lipid peroxidation (Fig. 2) and hydrogen peroxide content (Fig. 3) were significantly reduced in treated fruits with BRs (1Mg/lit) and 45°CHW. As shown in Fig. 2 and 3, the lipid peroxidation, hydrogen peroxide content of control increased significantly during storage time (P < 0.05). The POD (POD) (Fig. 4) and CAT (CAT) activities (Fig. 5) in treated fruits with BR and HW increased with chilling stress time but showed an increasing pattern in control fruits during storage time. The POD and CAT activities were higher in BRs and HW treated fruits than in control fruits at day 21 (P < 0.01). A correlation was observed between CI index and lipid peroxidation (Fig. 6) and hydrogen peroxide content (Fig. 7). Moreover, the CI index, lipid peroxidation and hydrogen peroxide content were significantly lower in BRs and HW treated fruit than those of control fruit.

![Fig. 1. Effect of BRs and HW treatment on CI (%) of lime fruit. Means in each column having the same letters are not significantly at 5% level of probability using Duncan’ test. C: Control, b1: 0.5 Mg/lit BRs, b2: 1 Mg/lit BRs, w1: 45°C HW and w2: 55°C HW.](image1)

![Fig. 2. Effect of BRs and HW treatment on lipid peroxidation (mM/gF.W) of lime fruit. Means in each column having the same letters are not significantly at 5% level of probability using Duncan’ test. C: Control, b1: 0.5 Mg/lit BRs, b2: 1 Mg/lit BRs, w1: 45°C HW and w2: 55°C HW.](image2)
Influences of Brassinosteroid and Hot Water on …

Fig. 3. Effect of BRs and HW treatment on hydrogen peroxide (µg/gfw) of lime fruit. Means in each column having the same letters are not significantly at 5% level of probability using Duncan’ test. C: Control, b1: 0.5 Mg/lit BRs, b2: 1 Mg/lit BRs, w1: 45°C HW and w2: 55°C HW.

Fig. 4. Effect of BRs and HW treatment on POD activity (Unit/mg protein) of lime fruit. Means in each column with the same letters are not significantly at 5% level of probability using Duncan’ test. C: Control, b1: 0.5 Mg/lit BRs, b2: 1 Mg/lit BRs, w1: 45°C HW, and w2: 55°C HW.

Fig. 5. Effect of BRs and HW treatment on CAT activity (Unit/mg protein) of lime fruit. Means in each column with the same letters are not significantly at 5% level of probability using Duncan’ test. C: Control, b1: 0.5 Mg/lit BRs, b2: 1 Mg/lit BRs, w1: 45°C HW, and w2: 55°C HW.
Fig. 6. Correlation between CI and lipid peroxidation of the lime fruit during storage under low temperature.

Fig. 7. Correlation between CI and hydrogen peroxide of the lime fruit during storage under low temperature.

Fig. 8. Correlation between lipid peroxidation and hydrogen peroxide of the lime fruit during storage under low temperature.

Fig. 9. Correlation between POD activity and hydrogen peroxide of the lime fruit during storage under low temperature.
Treatment with BRs and HW decreased the accumulation of MDA, the lipid peroxidation product, which is considered as an indicator of the loss of structural integrity in membranes and associated with cold stress. ROS accumulation cause oxidative damage to plant cell membranes and forms toxic products such as MDA as a secondary end-product of polyunsaturated fatty acid oxidation. Thus, MDA is usually considered to be an indicator of plant oxidative stress (Hodges et al., 1999) and of the structural integrity of the membranes in plants subjected to low temperatures. It was reported that treatments with BRs could decrease the lipid peroxidation level induced by abiotic stress, such as oxygen deficiency (Ershova and Khripach, 1996), heat shock (Ogweno et al., 2008) and drought stress (Robinson and Bunce, 2000). The results showed that drought stress increased the H_2O_2 and lipid peroxidation level in fruits; however, this effect was significantly alleviated by application of BRs and HW. BRs maintain the membrane structure stability under stress conditions (Bajguz and Hayat, 2009). Therefore, bean plants treated with BRs, both in the presence and absence of cadmium stress, had a higher membrane stability index and decreased peroxidation of membrane lipids (Rady, 2011). However inhibited lipid peroxidation under chilling stress, which indicate that BRs strongly capable of protecting plants from oxidative damage, enhancing chilling tolerance, protecting membrane integrity and stabilizing antioxidant enzymes (Sharp et al., 1990; Bandurska, 1993; Bohnert and Jensen, 1996). Moreover, increasing BRs level in response to chilling stress plays a pivotal role in antioxidative stress as a hydroxyl radical scavenger (Yadegari et al., 2007). Correlations between the accumulation of antioxidant enzymes and improved cold tolerance have been found mostly in chilling sensitive plants (Zhao et al., 2009). Yusuf et al. (2011) reported that the treatment of Vigna radiata plants with BRs enhanced the activities of antioxidant enzymes both in the absence and presence of boron stress. He suggested that the acceleration of the activities of antioxidant enzymes resulted in an increase in the capacity of tolerance to boron stress. Accordingly, Rady (2011); showed that the treatment of bean plants with BRs enhanced the activities of antioxidant enzymes both in the presence and absence of cadmium stress. POD and CAT activity increased when plants exposed to stresses such as low temperature, pathogen infections, UV radiation, poisonous gases and heavy metals (Grover and Sinha, 1985). POD can scavenge the free radicals under chilling conditions. According to the Fig. 4 and 5, during storage time, antioxidant enzymes activities, upon BRs and HW treatments were significantly higher (P < 0.05) when compared to controls. BRs treatment hypothetically induces a defense mechanism which protect the plant tissue during environmental stresses, such as cold (Bajguz and Hayat, 2009). Zhu et al. (2010) reported that the brassinosteroids at a concentration of 5Mm, effectively inhibited development of blue mould rot in jujube fruit via enhancing the activities of POD, CAT and superoxide dismutase (SOD). It is generally accepted that POD and CAT activity increases in fruits under chilling temperature, the enhancement being proposed as a mechanism to alleviate CI symptoms (Lafuente et al., 2003), since pre-treatments such as heat reduces CI, (Chen et al., 2008) and leads to higher increases in POD activity in banana fruit. The increase in POD and CAT activity of BRs and HW treated fruits during storage time along with the amelioration of CI in this study confirms this finding. In conclusion, the present study has proven the beneficial effects of BRs on reducing CI in lime fruits during low temperature storage. Our results suggest that the development of CI in lime fruits increase POD and CAT activities and reduce lipid...
peroxidation content, which ultimately results in reduced membrane integrity loses. Consequently, applications of BRs and HW are suggested for reducing CI in lime fruits during low temperature storage.

References

