

Evaluation of Sustained and Regulated Deficit Irrigation Effects on the Performance of a Field-Grown Olive Cultivar 'Zard' (*Olea europaea* L.) under Semi-Arid Conditions

Samira Ahmadipour^{1,2}, Isa Arji^{3,4*}, Ali Ebadi⁵, Vahid Abdossi¹

1 Department of Horticulture Science and Agronomy, SRC, Islamic Azad University, Tehran, Iran

2 Employee of the Kermanshah Agricultural Jihad Organization, Kermanshah, Iran

3 Crop and Horticultural Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran

4 Department of Horticultural Sciences and Engineering, Faculty of Agricultural Sciences and Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran

5 Department of Horticultural Science, Faculty of Science and Agricultural Engineering, Campus of Agriculture and Natural Resources, The Tehran University, Karaj, Iran

ARTICLE INFO

*Corresponding author's email: i.arji@razi.ac.ir

ABSTRACT

Article history:

Received: 8 November 2024,

Received in revised form: 24 July 2025,

Accepted: 24 July 2025,

Article type:

Research paper

Keywords:

Fruit characteristics,
Oil content,
Oil quality,
Olive,
Water stress,
Yield

Deficit irrigation as a water-saving strategy for olive trees in semi-arid regions of Iran has received limited research attention. This study addressed the current gap in such research by evaluating the effects of deficit irrigation on the 'Zard' olive cultivar over two years. Six irrigation regimes were compared, i.e., control (C) (100% of crop evapotranspiration (ETc) throughout the growing season), Sustained Deficit Irrigation 1 (SDI1) (75% ETc throughout the growing season), Sustained Deficit Irrigation 2 (SDI2) (50% ETc throughout the growing season), Regulated Deficit Irrigation 1 (RDI1) (75% ETc from 4 to 9 weeks after full bloom), Regulated Deficit Irrigation 2 (RDI2) (50% ETc from 4 to 9 weeks after full bloom), and Regulated Deficit Irrigation 3 (RDI3) (50% ETc for 2 weeks before harvest). Sustained deficit irrigation (SDI1 and SDI2) and RDI2 negatively affected flower count and perfect flower formation (except RDI3) in the second year. Fruit set was not significantly affected by RDI1 and RDI3 compared to the control, but SDI2 significantly reduced both fruit weight and pulp-to-pit ratio. Fruit yield and oil content were negatively affected by SDI1, SDI2, and RDI2 compared to the control. However, RDI1 and RDI3 showed no significant difference compared to the control in these aspects. Regulated deficit irrigation (RDI1 and RDI3) with a minor reduction in water supply is recommended for semi-arid regions, excluding Mediterranean climates, to achieve high fruit yield and oil content while conserving water.

Introduction

The Olive tree (*Olea europaea* L.) is a type of evergreen tree that can withstand long periods of drought (Bacelar et al., 2006; Fernandez, 2014). Olive tree is considered as an important fruit in arid regions (Molina-Moral et al., 2022). Olive tree is typically grown for oil production in water scarcity regions (Tognetti et al., 2006; Fernandez, 2014). The production of olives in Iran is economically

significant due to its favorable growing conditions in some areas and the demand for olive oil and table olives. The cultivated area of olive orchards in Iran is about 60,000 ha with a production about 130,000 t (Ministry of Agriculture Newsletter, 2021). The olive global cultivated area and production are higher than 10 million ha with 23 million t, respectively (FAO, 2021). The growth and yield of fruit depend

COPYRIGHT

© 2026 The author(s). This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other medium is permitted, provided the original author(s) and source are cited, in accordance with accepted academic practice. No permission is required from the authors or the publishers.

heavily on water availability. Irrigation is essential in areas where water is scarce, especially for valuable crops such as fruits. The main challenge for olive orchards in Iran is the limited water supply due to long terms of drought and water scarcity. To optimize water use, it is crucial to employ effective methods such as cultivating tolerant varieties (Arzani and Arji, 2000; Calvo-Polanco et al., 2019), determining the best time for irrigation (Gholami et al., 2016; Molina-Moral et al., 2022), using mulch (Gholami et al., 2013a; Gholami and Zahedi, 2020), and applying anti-transpiration growth regulators (Gholami et al., 2013b; Ouledali et al., 2019) to reduce water consumption.

Utilizing a deficit irrigation strategy can be a beneficial approach in horticultural fruit production by enhancing water use efficiency. Implementing deficit irrigation during drought- less sensitive growth stages in compare to full irrigation improve water use efficiency (Iniesta et al., 2009; Dell'Amico et al., 2012; Rapoport et al., 2012; Giron et al., 2015; Ahumada-Orellana et al., 2019). Applying deficit irrigation during the appropriate stages of plant growth can lead to reduced vegetative growth, better fruit quality, and increased economic profits (Tognetti et al., 2006; Gholami and Zahedi, 2021). When water is scarce during the flowering stages, there is a decline in flowering, inflorescences, and perfect flowers (Rapoport et al., 2012; Tadayon and Hosseini, 2022). During the flowering stage, it's best to keep plants well-watered until pit hardening begins. This helps fruit set and cell processes. Avoiding water deficiency during this stage is essential to prevent reduced fruit set and smaller fruit sizes. However, during the pit hardening period which lasts about six to seven weeks, it's an excellent strategy to use deficit irrigation to conserve and optimize water usage. This approach has been recommended by experts such as Nikbakht et al. (2011), Dell'Amico et al. (2012), and Rapoport et al. (2012). In regions where water is scarce, deficit irrigation can be a cost-effective way to maintain orchard production, even if the amount of production is lower compared to orchards with higher water consumption (Lavee and Wodner, 1991; Rapoport and Costagli, 2004; Tognetti et al., 2006; Costa et al., 2007; Iniesta et al., 2009; Moriana et al., 2012; Moriana et al., 2012; Goncalves et al., 2020; Fernandez et al., 2020). Olive trees are particularly vulnerable to drought stress during their phenological stages, but they are more tolerant during the pit hardening stage. Although drought stress can affect the oil accumulation stage. The oil's quality and quantity can be affected by the amount of water applied to olive trees during different growth stages (Tognetti et al., 2005; Grattan et al., 2006; Zeleke et al., 2012; Grijalva-Contreras et al., 2013; Rosecrance et al., 2015; Siakou et al., 2021).

Previous research (Patumi et al., 1999; Gomes-Rico et al., 2007; Nikbakht et al., 2011; Rosecrance et al., 2015) suggested that applying mild water deficit have a positive impact on the yield, oil content, and quality of olive trees. Conversely, implementing severe water deficit can significantly decrease growth and lead to a reduction in yield and product quality (Costa et al., 2007; Moriana et al., 2012; Chartzoulakis and Bertaki, 2015; Gucci et al., 2019; García et al., 2020). A comparison among two regulated deficit irrigation strategies and sustained deficit irrigation was done by Arbizu-milagro et al. (2023) exhibit that moderate regulated deficit irrigation was more benefit in olive fruit yield and oil production. Olive fruit yield was affected by sustained and deficit irrigation negatively but olive oil accumulation was not affected (Iniesta et al., 2009). The Zard olive cultivar is suitable for cultivation in Iran (FAO, 2008). However, there have been limited studies on the effects of deficit irrigation on Iranian olive varieties. Therefore, this project aimed to investigate and compare the impact of regulated and sustained deficit irrigation strategies on flower and fruit reproduction characteristics of the Zard olive cultivar in the west of Iran.

Materials and Methods

Experimental site and plant materials

This research was conducted for two consecutive years from 2015 to 2016 in the Gilan-e Gharb (longitude: 45° 56' E, latitude: 34° 8' N, altitude: 890 m) of Kermanshah province, Iran. The study area had an average temperature of 20.47 °C, an average annual maximum temperature of 44.16 °C, and an average precipitation of 432 mm. To examine the impact of deficit irrigation in 2015, treatments were implemented from July 2014. For this experiment, self-rooted twelve-year-old Zard olive trees were used as the plant material. We carefully analyzed both the soil and water used. The soil had a sandy-clay texture and a pH level of 7.5. The water had a pH level of 7.1 and an electrical conductivity of 1.2 ds m⁻¹.

Experimental design and treatment applications

This experiment was conducted using a completely randomized block design (CRBD) with three replications. Six irrigation treatments were applied, varying in both the volume and timing of water application throughout the olive growing season. The treatments were delivered using a drip irrigation system from May 15, 2014, to October 31, 2016. The field layout consisted of 180 mature olive trees with a canopy cover exceeding 50%, planted at a spacing of 6 × 6 meters. Each experimental unit comprised 10 trees.

Irrigation Treatments

The six irrigation treatments were defined as follows:
Control (C): Full crop water requirement (ETc) applied throughout the growing season.

Sustained Deficit Irrigation 1 (SDI1): 75% of ETc applied throughout the season.

Regulated Deficit Irrigation 1 (RDI1): 75% of ETc applied during the period between 4 and 9 weeks after flowering.

Sustained Deficit Irrigation 2 (SDI2): 50% of ETc applied throughout the season.

Regulated Deficit Irrigation 2 (RDI2): 50% of ETc applied between 4 and 9 weeks after flowering.

Regulated Deficit Irrigation 3 (RDI3): 50% of ETc applied during the final two weeks before harvest.

Irrigation scheduling was performed every 3 d based on the calculated crop evapotranspiration (ETc). The irrigation volume for each treatment was adjusted accordingly and monitored using volumetric water meters installed at each plot. All other cultural practices, such as pruning, fertilization, and pest management, were applied uniformly across all treatments.

Estimation of Crop Water Requirement

The crop water requirement (ETc) was calculated based on the FAO Irrigation and Drainage Paper No. 56 (Allen et al., 1998) using the following equation:

$$ETc = Kc \times Kr \times ETo$$

Where:

ETc is the crop evapotranspiration (mm d⁻¹),
Kc is the crop coefficient, obtained from FAO guidelines,

Kr is the ground cover coefficient, considered as 1.0 due to the mature canopy coverage (>50%) (Fereres et al., 1982),

ETo is the reference evapotranspiration (mm d⁻¹).

Calculation of Reference Evapotranspiration (ETo)
The reference evapotranspiration (ETo) was calculated using CropWat software, a decision-support tool developed by the Food and Agriculture Organization (FAO). CropWat implements the FAO Penman-Monteith equation, which is considered the standard method for estimating ETo. The equation is as follows:

$$ETo = \frac{0.408\Delta(Rn - G) + \gamma(\frac{900}{T + 273})u2(es - ea)}{\Delta + \gamma(1 + 0.34u2)}$$

Where:

ETo = Reference evapotranspiration (mm d⁻¹)

Rn = Net radiation at the crop surface (MJ m⁻² d⁻¹)

G = Soil heat flux density (MJ m⁻² d⁻¹)

T = Mean daily air temperature at 2 m height (°C)

u2 = Wind speed at 2 m height (m s⁻¹)

es = Saturation vapor pressure (kPa)

ea = Actual vapor pressure (kPa)

(es - ea) = Vapor pressure deficit (kPa)

Δ = Slope of the saturation vapor pressure curve (kPa °C⁻¹)

γ = Psychrometric constant (kPa °C⁻¹)

Daily meteorological data, including maximum and minimum temperatures, relative humidity, sunshine hours, and wind speed, were obtained from the Gilan-e Gharb synoptic weather station. This data was entered into CropWat, which calculated daily ETo values for the period between May 15 (end of the rainy season) and early November (start of the following rainy season) (Table 1).

Table 1. Monthly irrigation water applied (m³ ha⁻¹).

Month	2015	2016
(May)	1300.92	1208.69
(Jun)	1445.49	1369.31
(Jul)	1569.48	1787.28
(Aug)	1639.38	1508.76
(Sep)	1271.96	1275.71
(Oct)	893.26	861.69
Total	8120.49	8011.45

Measured traits

The study measured various reproductive traits, including the number of flowers per inflorescence, perfect flower and final fruit set, and fruit traits such as fruit weight, pit weight, pulp/pit ratio, fruit yield per tree, and percentage of dry matter. Additionally, the study also measured oil content, including the oil percentage in fresh and dry matter, oil yield, and oil fatty acid composition.

During the peak blooming period, when about 75% of the flowers had opened according to Sanz-Cortez et al. (2002), we randomly selected 100 clusters of each replication (10 trees) and counted the total number of flowers in each cluster. We then determined the number of complete flowers. To evaluate the final fruit set, four branches were chosen in each direction of the tree and the total number of fruits counted 40 d after pollination based on the I.O.O.C (2002) method. To determine the total number of flowers/inflorescences, we collected 100 flower clusters from around each tree, at a height of 1.5 m above the ground.

Fruit characteristics

We measured the weight of 40 randomly selected fruits in harvesting time from each experimental unit (10 trees) using digital scales. To determine the weight of the pulp and pit, we separated the pulp from the pit with a knife and then weighed them. We dried the pulp and pits in the oven at 72 °C for 48 h until their weight became stable (I.O.O.C., 2002) to

calculate the dry weight and percentage of dry matter. We also measured the pulp-to-pit ratio based on 40 fruits.

Oil extraction and determination

To determine the fruit yield of each tree, we harvested fruit from each one. We randomly selected twenty fruits from a half kilogram of fruit and dried them in an oven at 72 °C for 24 to 48 h. Once dried, we crushed the dried fruits using a mill and extracted the oil using the Soxhlet method with diethyl ether solvent (I.O.O.C. 2002). To extract oil from the fruits at harvest time, we used a laboratory mechanical oil extraction model (Oliomio GOLD France). The extracted oil was used for qualitative analysis.

Oil quality determination

The Fatty acid profile was determined based on European Official Methods of Analysis (EEC 1991). One hundred milligrams of oil were dissolved in 10 mL n-hexane with 100 μ L of 2 N methanolic potassium hydroxide solution. The sample was shaken gently for 30 s and centrifuged for 15 min. For chromatographic analysis, the supernatant was separated and utilized. Other indicators such as peroxide number, acidity, spectrophotometric index (k_{270} , k_{232}), and oil iodine number were determined according to EU rules (EEC, 1991).

Statistical analysis

Statistical analysis and analysis of variance were performed using SAS software (version 9/1 of North

Carolina) and a comparison of the means was done using Duncan's multi-domain test.

Results

Effect of deficit irrigation on flower reproductive traits

The collected data of flower characteristics and fruit set are presented in Table 2 during 2015 and 2016. Deficit irrigation treatments had a significant impact ($P < 0.05$) on the number of flowers per inflorescence. However, the number of flowers per inflorescence was not affected by the RDI3 treatment (50% Reduced Deficit Irrigation two weeks before harvest) in 2015 or 2016 when compared to the control treatment. Compared to other treatments, the SDI2 (50% water deficit) and SDI1 (25% water deficit) treatments more effectively decreased the number of flowers per inflorescence, a result closely related to the degree of water stress. The number of perfect flowers declined due to heightened water stress in both 2015 and 2016, as shown in Table 2. The control trees exhibited better-quality flowers in both years. All treatments, except for RDI3, had a significant ($P < 0.05$) decrease in the number of perfect flowers. In 2015, alternate bearing caused a decline in the number of perfect flowers when compared to 2016.

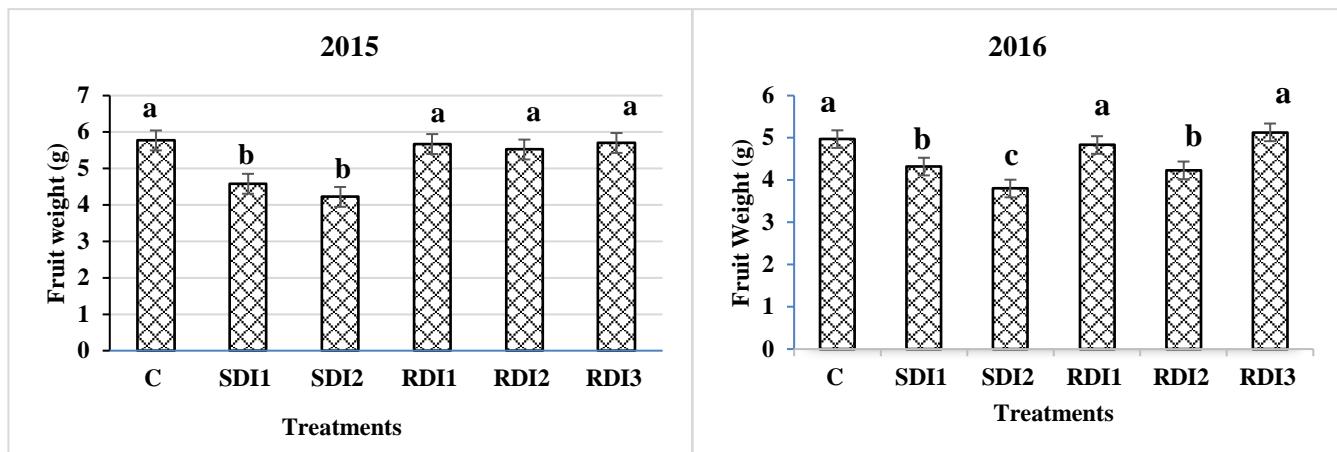
While fruit set varied significantly ($P < 0.05$) among treatments in 2016, this was not the case in 2015 (Table 2). Notably, the SDI2, RDI1, and SDI1 treatments led to a significant decrease in fruit set ($P < 0.05$) in comparison to the remaining treatments.

Table 2. Number of flowers in an inflorescence, perfect flowers number, and fruit set in 'Zard' olive trees under six different irrigation treatments.

Treatments	Flower/Inflorescence		Perfect Flower No.		Fruit set %	
	2015	2016	2015	2016	2015	2016
C	32.00 ^a	34.00 ^a	5.00 ^a	23.33 ^a	0.50 ^a	2.83 ^a
SDI1	27.33 ^b	19.33 ^c	2.43 ^c	17.33 ^b	0.50 ^a	2.33 ^b
SDI2	24.00 ^d	14.00 ^d	2.00 ^d	10.67 ^d	0.43 ^a	1.00 ^d
RDI1	29.67 ^a	24.67 ^b	3.33 ^b	17.67 ^b	0.42 ^a	2.93 ^a
RDI2	26.67 ^c	24.00 ^b	2.33 ^{cd}	15.00 ^c	0.51 ^a	1.67 ^c
RDI3	31.33 ^a	33.33 ^a	4.67 ^{ab}	23.67 ^a	0.39 ^a	2.73 ^a

Different letters in each column indicate significant differences at ($P \leq 0.05$) by Duncan's test. C (100% ETc) control irrigation treatment during the growing season, SDI1 (75% ETc) irrigation during the whole growing season, SDI2 (50% ETc) irrigation throughout the growing season, RDI1 (75% ETc) irrigation 4 to 9 weeks after full bloom, RDI2 (50% ETc) irrigation 4 to 9 weeks after full bloom and RDI3 (50% ETc) irrigation 2 weeks before harvest.

Fruit weight, pit weight, pulp weight, and pulp/pit ratio


Fruit weight was significantly ($P < 0.05$) affected by different irrigation treatments in 2015 and 2016 (Fig. 1). In 2015, fruit weight was significantly reduced only under sustained deficit irrigation treatments (SDI1 and SDI2) compared to the control and regulated deficit irrigation treatments (RDI1, RDI2

and RDI3). In 2016, fruit weight was significantly reduced under sustained deficit irrigation treatments (SDI1 and SDI2) and regulated deficit irrigation treatment (RDI2) compared to the control and others regulated deficit irrigation treatments (RDI1 and RDI3) (Fig. 1).

Different sustained and regulated deficit irrigation treatments did not significantly affect pit weight

compared to the control treatment in 2015 and 2016. However, they did have significant effects on pulp weight at a statistical probability level ($P < 0.05$). In 2015, sustained deficit irrigation (SDI2 and SDI1) treatments resulted in a more pronounced reduction in pulp weight compared to the control and regulated deficit irrigation (RDI1, RDI2 and RDI3) treatments.

Subsequently, in 2016, a significant reduction in pulp weight was evident in SDI2, SDI1, and RDI2. In 2015, the sustained deficit irrigation treatments (SDI1 and SDI2) resulted in a significant ($P < 0.05$) reduction of the pulp/pit ratio compared to other treatments. In addition, the pulp/pit ratio declined in RDI treatments relative to fully irrigated trees and RDI3 (two weeks before harvest) in 2016 (Table 3).

Fig. 1. Mean fruit weight of different treatments. Different letters indicate significant differences at ($P < 0.05$) by Duncan's test. (C) (100% ETc) = control irrigation treatment during the growing season, SDI1 (75% ETc) irrigation during the whole growing season, SDI2 (50% ETc) irrigation throughout the growing season, RDI1 (75% ETc) irrigation 4 to 9 weeks after full bloom, RDI2 (50% ETc) irrigation 4 to 9 weeks after full bloom and RDI3 (50% ETc) irrigation 2 weeks before harvest.

Table 3. Pit weight, pulp weight, and pulp/pit ratio in 'Zard' olive trees under six different irrigation treatments.

Treatments	Pit weight (g)		Pulp weight (g)		Pulp/Pit Ratio	
	2015	2016	2015	2016	2015	2016
C	0.87 ^a	0.85 ^a	4.90 ^a	4.12 ^a	5.63 ^a	4.85 ^a
SDI1	0.82 ^a	0.84 ^a	3.76 ^b	3.48 ^b	4.59 ^b	4.14 ^c
SDI2	0.86 ^a	0.83 ^a	3.36 ^c	2.97 ^c	3.91 ^c	3.58 ^d
RDI1	0.85 ^a	0.87 ^a	4.82 ^a	3.96 ^a	5.67 ^a	4.55 ^b
RDI2	0.82 ^a	0.84 ^a	4.70 ^a	3.39 ^b	5.73 ^a	4.04 ^c
RDI3	0.85 ^a	0.83 ^a	4.85 ^a	4.30 ^a	5.71 ^a	5.18 ^a

Different letters in each column indicate significant differences at ($P < 0.05$) by Duncan's test. C (100% ETc) control irrigation treatment during the growing season, SDI1 (75% ETc) irrigation during the whole growing season, SDI2 (50% ETc) irrigation throughout the growing season, RDI1 (75% ETc) irrigation 4 to 9 weeks after full bloom, RDI2 (50% ETc) irrigation 4 to 9 weeks after full bloom and RDI3 (50% ETc) irrigation 2 weeks before harvest.

Fruit dry matter and oil content

The two-year study revealed that fruit dry matter significantly increased ($P < 0.05$) in RDI1 and RDI3 compared to other deficit irrigation and control treatments in both 2015 and 2016 (Table 4). The oil content in fruit fresh and dry matter basis was not significantly affected by the regulated deficit irrigation treatments (RDI1 and RDI3) compared to the control treatment. However, it showed a significant decrease with sustained deficit irrigation (SDI1 and SDI2) and regulated deficit irrigation (RDI2) treatment (Table 4). The oil content in the

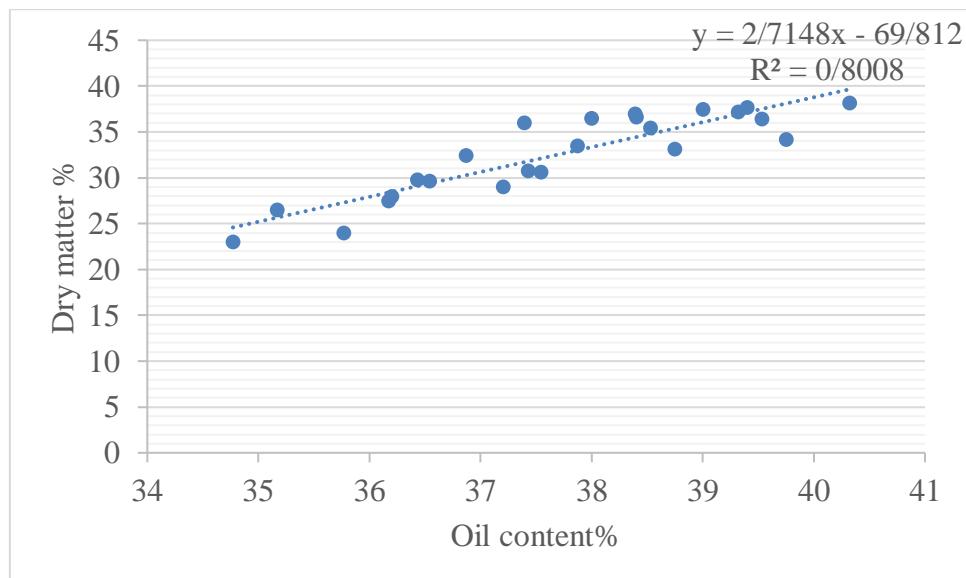

control treatment was 14.83 and 14.55% for the years 2015 and 2016, respectively. Meanwhile, the lowest oil content in the fruit fresh matter was 9.95 and 10.98% in the sustained deficit irrigation (SDI1 and SDI2) treatment, for 2015 and 2016, respectively. The highest oil content (fresh and dry weight basis) was obtained by regulated deficit irrigation (RDI3, two weeks of water stress before harvesting) in compare to others treatments (Table 4). Additionally, a positive linear regression ($R^2 = 0.80$) between oil content and fruit dry matter was observed, as depicted in Figure 2.

Table 4. Fruit dry matter, oil content (in fresh and dry matter) in 'Zard' olive trees under six different irrigation treatments.

Treatments	Dry Matter%	Oil% on Fresh Matter	Oil% on Dry Matter

	2015	2016	2015	2016	2015	2016
C	36.17 ^c	35.39 ^c	14.83 ^{ab}	14.55 ^a	37.67 ^a	37.00 ^a
SDI1	37.43 ^b	37.20 ^b	12.63 ^c	11.53 ^b	33.47 ^b	30.67 ^c
SDI2	37.32 ^b	37.00 ^b	9.95 ^d	10.98 ^c	27.50 ^c	24.00 ^d
RDI1	39.4 ^a	38.54 ^a	14.33 ^{ab}	14.27 ^a	36.43 ^a	34.17 ^b
RDI2	37.87 ^b	37.75 ^b	12.76 ^c	11.41 ^b	30.77 ^c	29.00 ^c
RDI3	39.53 ^a	38.77 ^a	15.40 ^a	15.38 ^a	38.17 ^a	37.50 ^a

Different letters in each column indicate significant differences at ($P < 0.05$) by Duncan's test. C (100% ETc) control irrigation treatment during the growing season, SDI1 (75% ETc) irrigation during the whole growing season, SDI2 (50% ETc) irrigation throughout the growing season, RDI1 (75% ETc) irrigation 4 to 9 weeks after full bloom, RDI2 (50% ETc) irrigation 4 to 9 weeks after full bloom and RDI3 (50% ETc) irrigation 2 weeks before harvest.

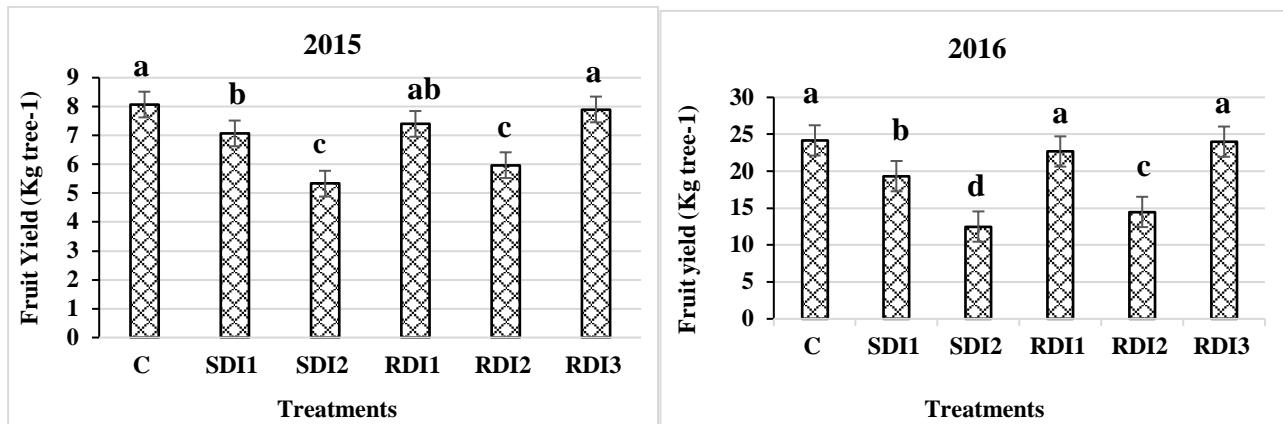


Fig. 2. Relationship between oil production and fruit dry matter in different irrigation treatments.

Fruit yield per tree (kg)

Under control conditions, the fruit yield per tree was 8.07 kg in 2015 and 24.17 kg in 2016. However, when subjected to sustained deficit irrigation (SDI1 and SDI2), the fruit yield decreased significantly in both years. The yield was also reduced significantly in the severe stress treatment (RDI2) under regulated deficit irrigation conditions. However, RDI1 and RDI3 did not show any decrease in fruit yield compared to the control in 2015 and 2016 (Fig. 3). The fatty acid compositions of olive oil under different irrigation treatments are given in Table 5. Myristic acid (C14:0) slightly increased by deficit irrigation intensity (Table 5). The application of 50% deficit irrigation caused a further increase in myristic acid (Table 5). Palmitic acid (C16:0) slightly

decreased with more stress treatments, but the Palmitoleic (C16:1) amount increased with water stress treatments. Stearic (C18:0) and Linoleic acid (C18:2) showed significantly higher values under water stress treatments. Oleic (C18:1) significantly decreased under sustained deficit irrigation in comparison to full irrigation and RDI treatments. There were no significant differences in Linolenic (C18:3), Arachidonic (C20:0), and Eicosenoic (C20:1) among different treatments (Table 5). Peroxide values, Free fatty acids, Iodine Index, K270, and K232 are presented in Table 6. There were no significant differences in mentioned oil qualitative parameters among sustained, deficit irrigation, and control treatments.

Fig. 3. Fruit yield under different irrigation treatments in 2015 and 2016. Different letters indicate significant differences at ($P < 0.05$) by Duncan's test. (C) (100% ETc) = control irrigation treatment during the growing season, SDI1 (75% ETc) irrigation during the whole growing season, RDI1 (75% ETc) irrigation 4 to 9 weeks after full bloom, SDI2 (50% ETc) irrigation throughout the growing season, RDI2 (50% ETc) irrigation 4 to 9 weeks after full bloom and RDI3 (50% ETc) irrigation 2 weeks before harvest.

Table 5. Fatty acid composition of olive oils (%) under different irrigation treatments in 'Zard' olive trees under six different irrigation treatments.

Fatty acid	Irrigation treatments					
	C	SDI1	SDI2	RDI1	RDI2	RDI3
Myristic acid (14:0)	0.03 ^c	0.04 ^b	0.05 ^a	0.04 ^b	0.05 ^a	0.03 ^c
Palmitic acid (16:0)	16.46 ^a	14.86 ^b	14.63 ^c	15.86 ^a	15.33 ^b	16.04 ^a
Palmitoleic acid (16:1)	2.40 ^b	3.45 ^a	3.42 ^a	3.01 ^{ab}	3.31 ^{ab}	2.24 ^b
Stearic acid (18:0)	4.22 ^b	4.94 ^a	5.08 ^a	4.19 ^b	4.81 ^{ab}	4.37 ^b
Oleic acid (18:1)	68.18 ^a	64.15 ^c	65.39 ^c	69.23 ^a	66.70 ^b	70.12 ^a
Linoleic acid (18:2)	5.44 ^c	9.15 ^a	9.04 ^a	5.21 ^c	7.09 ^b	5.60 ^c
Linolenic acid (18:3)	0.55 ^a	0.61 ^a	0.67 ^a	0.53 ^a	0.52 ^a	0.51 ^a
Arachidonic acid (20:0)	0.49 ^a	0.46 ^a	0.48 ^a	0.42 ^a	0.52 ^a	0.39 ^a
Eicosenoic acid (20:1)	0.39 ^a	0.41 ^a	0.35 ^a	0.34 ^a	0.41 ^a	0.35 ^a

Different letters in each row indicate significant differences at ($P \leq 0.05$) by Duncan's test.

C (100% ETc) control irrigation treatment during the growing season, SDI1 (75% ETc) irrigation during the whole growing season, RDI1 (75% ETc) irrigation 4 to 9 weeks after full bloom, SDI2 (50% ETc) irrigation throughout the growing season, RDI2 (50% ETc) irrigation 4 to 9 weeks after full bloom and RDI3 (50% ETc) irrigation 2 weeks before harvest.

Table 6. Quality parameters of olive oil under different irrigation treatments in 'Zard' olive trees under six different irrigation treatments.

Quality parameters	Irrigation treatments					
	C	SDI1	SDI2	RDI1	RDI2	RDI3
Peroxide value (meq O ₂ kg ⁻¹)	8.90 ^a	9.59 ^a	10.17 ^a	8.52 ^a	8.87 ^a	8.03
Free fatty acids (% oleic acid)	0.77 ^a	0.88 ^a	0.73 ^a	0.78 ^a	0.83 ^a	0.90 ^a
Iodine Index	74.49 ^a	78.68 ^a	79.56 ^a	75.57 ^a	77.03 ^a	76.29 ^a
K270	0.09 ^a	0.12 ^a	0.13 ^a	0.08 ^a	0.10 ^a	0.08 ^a
K232	1.25 ^a	1.31 ^a	1.39 ^a	1.22 ^a	1.28 ^a	1.23 ^a

Different letters in each row indicate significant differences at ($P \leq 0.05$) by Duncan's test. C (100% ETc) control irrigation treatment during the growing season, SDI1 (75% ETc) irrigation during the whole growing season, SDI2 (50% ETc) irrigation throughout the growing season, RDI1 (75% ETc) irrigation 4 to 9 weeks after full bloom, RDI2 (50% ETc) irrigation 4 to 9 weeks after full bloom and RDI3 (50% ETc) irrigation 2 weeks before harvest.

Discussion

Water deficit has a negative impact on the yield and yield components of olive trees (Fernandes-Silva et al., 2010; Beya-Marshall et al., 2018). Olive trees

experience a decrease in flower formation in inflorescence, perfect flower, and fruit set due to water deficit, according to Trentacoste et al. (2019). Compared to the control, regulated and sustained

deficit irrigation significantly reduced both flowers per inflorescence and complete flowers (Table 2). Specifically, in 2015, SDI2 (50% deficit) and SDI1 (25% deficit) decreased flowers per inflorescence by 25 and 14.6%, respectively, while in 2016, the reductions were 58.8% and 43.1%. RDI2 (50% deficit) and RDI1 (25% deficit) reduced flowers per inflorescence by 16.7 and 7.3% in 2015, and 29.4 and 27.4% in 2016. Conversely, RDI3 (deficit irrigation two weeks before harvest) showed no significant impact on flower count per inflorescence in either year. Sustained deficit irrigation (SDI2 and SDI1) in 2015 resulted in 60 and 51.4% reductions in perfect flowers, and 54.3 and 25.7% in 2016 respectively. Regulated Deficit Irrigation (RDI2 and RDI1) in 2015 reduced perfect flowers by 53.4 and 33.4%, and by 35.7 and 24.3% in 2016 respectively. The reduction in both floral traits correlated with the severity of water stress, with SDI2 and SDI1 showing the most pronounced effects (Table 2).

The results clearly show that the severity and duration of water stress significantly impact the reduction in flowering. Sustained deficit irrigation (SDI), being a continuous stress, likely exerts a more prolonged and intense impact on the physiological processes mentioned above compared to regulated deficit irrigation (RDI), where water is withheld during specific, less sensitive periods. The fact that RDI applied two weeks before harvest had no significant impact suggests that the critical period for flower development is earlier in the reproductive cycle. The study's findings align with the cited research (Moriana et al., 2012; Hueso et al., 2021; Rapoport et al., 2012; Nikbakht et al., 2011), reinforcing the well-established sensitivity of flowering stages to water availability in various plant species, including olive trees. In essence, the reduction in flowering observed under deficit irrigation is a complex response involving hormonal signaling, carbon allocation, nutrient dynamics, and developmental regulation, all of which are negatively impacted by the lack of sufficient water. The degree of impact is directly related to the intensity and duration of the water stress.

Fruit set is a sensitive stage to water stress (Fernandes-Silva et al., 2018). During the study, it was discovered that sustained deficit irrigation had a greater impact on reducing fruit set compared to deficit RDI and full irrigation. In particular, sustained deficit irrigation (SDI2 with 50% deficit irrigation and SDI1 with 25% deficit irrigation) decreased fruit set by 64.7% and 17.7% respectively in 2016. On the other hand, regulated deficit irrigation (RDI2 with 50% deficit irrigation 4-9 weeks after full bloom) reduced fruit set by 41% in 2016, while RDI1 (25% deficit irrigation 4-9 weeks after full bloom) increased fruit set by 3.5% in 2016. In 2016, applying deficit irrigation (RDI3, 50% deficit irrigation two weeks before harvest) did not

have a significant impact on the fruit set compared to the control group which received full irrigation (Table 2). Caruso et al. (2013) found that trees experiencing severe water stress produced fewer fruits than trees were received the mild water deficit, while fully-irrigated trees produced the most fruits. The text clearly indicates that SDI had a more significant negative impact on fruit set compared to RDI. This is likely because SDI imposes a continuous stress throughout the critical period following flowering, affecting all the physiological processes mentioned above more severely and for a longer duration. The fact that RDI applied 4-9 weeks after full bloom reduced fruit set at a 50% deficit but slightly increased it at a 25% deficit in 2016 suggests a nuanced response to the timing and severity of the stress. Mild, regulated stress during specific periods might trigger certain adaptive responses without severely compromising the crucial physiological processes for fruit set. However, more severe RDI, as seen with the 50% deficit, can still lead to significant reductions, aligning with the findings of Trentacoste et al. (2019). The observation that RDI applied two weeks before harvest had no significant impact on fruit set indicates that the critical physiological events determining fruit set largely occur earlier in the post-flowering period. By this late stage, the fruits have already been established and are likely more resilient to short-term water deficits. Sustained stress has a more pronounced negative effect because it impacts these sensitive physiological processes continuously during the critical fruit set period. The timing and severity of the stress in RDI regimes can lead to variable outcomes, highlighting the complexity of plant responses to water deficit.

Sustained deficit irrigation (SDI1 and SDI2) significantly reduced fruit weight, pulp weight, and pulp/pit ratio over two years compared to other treatments. In 2015, SDI2 (50% deficit) and SDI1 (25% deficit) decreased fruit weight by 26.9 and 20.6%, respectively, and in 2016 by 23.5 and 13.1%. Regulated deficit irrigation (RDI1 and RDI2 applied 4-9 weeks after full bloom) also reduced fruit weight, with more pronounced effects in 2016. Pit weight remained unaffected by deficit irrigation. The impact on pulp weight and pulp/pit ratio mirrored the trends observed in fruit weight. The severity of the impact on fruit characteristics followed the order: SDI2 > SDI1 > RDI2 > RDI1 > RDI3 > Control. These findings align with Siakou et al. (2021) and Goncalves et al. (2020), who also reported a greater negative impact of sustained deficit irrigation on fruit and pulp weight compared to regulated deficit irrigation and full irrigation. Furthermore, the observation that full irrigation enhances the pulp/pit ratio, as seen by Conde-Innamorato et al. (2022) for Arbequina and Frantoio cultivars, supports our results. The reduced fruit size under water shortage,

impacting weight, pulp weight, and pulp/pit ratio in the order of stress severity, is consistent with findings from Rapoport and Costagli (2004), Nikbakht et al. (2011), and Dell'Amico et al. (2012). The consistent and prolonged water stress imposed by SDI throughout the entire growing season has a cumulative negative effect on the physiological processes critical for fruit development. The plant experiences chronic limitations in water uptake, photosynthesis, and nutrient transport, leading to a more substantial reduction in fruit size, pulp weight, and consequently, the pulp/pit ratio. RDI, by strategically applying water stress during specific periods (in this case, 4-9 weeks after full bloom), appears to have a less severe impact. This suggests that while fruit development is sensitive during this phase, the plant might have some capacity to recover or that the stress is not as prolonged as in SDI. The timing of the stress is crucial; applying stress during periods of rapid cell division and expansion would likely have a more significant impact on final fruit size. The findings of this study are consistent with the cited literature, reinforcing the understanding that water availability is a critical factor influencing fruit development and composition in various fruit crops, including olives. The order of impact (SDI2 > SDI1 > RDI2 > RDI1 > RDI3 > Control) directly reflects the severity and duration of the water deficit. The reduction in fruit weight, pulp weight, and pulp/pit ratio under deficit irrigation is a consequence of reduced physiological responses, and ultimately, a limitation in the resources available for fruit growth and development. Sustained stress exacerbates these physiological limitations, leading to more pronounced effects on fruit characteristics compared to strategically applied, regulated deficit irrigation.

Sustained deficit irrigation (SDI2 and SDI1) resulted in the lowest fruit dry weight, followed by regulated deficit irrigation (RDI2, RDI1, RDI3), with the control (C) exhibiting the highest (Table 4). Notably, both sustained and regulated deficit irrigation increased fruit dry matter compared to the control in both 2015 (SDI: 9.29-8.93%; RDI: 4.7-5.9%) and 2016 (SDI: 9.55-8.9%; RDI: 6.67-4.55%). These findings align with Goncalves et al. (2020), who also observed increased fruit dry matter under both SDI and RDI compared to full irrigation. However, Vaio et al. (2013) reported a contrasting result in the Leccino cultivar, where deficit irrigation (25 and 50% of water transpiration) decreased fruit dry matter relative to full irrigation. Similarly, Monasterio et al. (2021) noted a decrease in fruit moisture content due to deficit irrigation, which inherently implies an increase in dry matter. This study corroborates the general trend of increased fruit dry matter under SDI and RDI, with the extent of the increase being influenced by the level of water deficit. The discrepancy with Vaio et al. (2013)

highlights potential cultivar-specific responses to deficit irrigation regarding fruit dry matter accumulation.

Sustained deficit irrigation (SDI) at 50% (SDI2) significantly reduced olive oil in fresh weight by 32.91% and 24.54% in 2015 and 2016, respectively, while a 25% deficit (SDI1) resulted in lower reductions (14.83 and 20.76%). Similarly, regulated deficit irrigation (RDI) at 50% (RDI2, 4-9 weeks post-bloom) decreased oil content by 13.96 and 21.58%, and at 25% (RDI1) by a smaller 3.37 and 1.94%. Our findings indicate that a 25% RDI during 4-9 weeks post-bloom in our semiarid conditions minimally impacted oil content (2-4% reduction), contrasting with Fernandez et al. (2013) who reported a substantial 26% oil yield decline in Arbequina olives with a 72% water reduction in Spain. Gomez-del-Campo (2013), also on Arbequina, observed a smaller 15% oil production decrease with a 27% water reduction. Notably, our study found a 15-20% oil content reduction (dry weight basis) with a 25% water reduction in our non-Mediterranean area. Conversely, RDI at 50% applied two weeks pre-harvest increased oil content in both years, likely due to fruit moisture loss concentrating the oil, a finding consistent with Monasterio et al. (2021) who reported a 0.16% oil content increase for every 1% moisture decrease. We also found a strong correlation ($R^2= 0.80$) between oil content and fruit dry matter, aligning with Gomez-del-Campo's (2013) $R^2= 0.88$ correlation.

The period of 4-9 weeks after full bloom is a crucial phase for fruit development and the initiation of significant oil accumulation in olives. Water stress during this period can disrupt the physiological processes necessary for oil synthesis, similar to the mechanisms described for SDI, but potentially to a lesser extent if the stress is applied for a limited duration. Unlike sustained stress, RDI applied during a specific window might allow the plant to recover somewhat once irrigation is resumed, potentially mitigating the long-term impact on oil production compared to continuous stress. This could explain the generally lower reductions observed with RDI compared to SDI.

Reducing irrigation significantly decreased fruit yield. In 2015 and 2016, 50% sustained deficit irrigation (SDI2) reduced yield by 33.95 and 48.28%, respectively, while 25% SDI (SDI1) caused reductions of 12.39 and 20.02%. Regulated deficit irrigation (RDI) during weeks 4-9 post-bloom also reduced yield: 50% RDI (RDI2) by 26.02 and 40.09%, and 25% RDI (RDI1) by 8.30 and 6.20% in 2015 and 2016, respectively. Full irrigation consistently resulted in the highest yields (Fig. 3), a finding supported by Tognetti et al. (2006), d'Andria et al. (2000), and Girona et al. (2000), and further corroborated by Corell et al. (2020) who observed lower yields with reduced irrigation in 'Manzanillo'

olives. While Iniesta et al. (2009) proposed RDI aims to maintain yield with water conservation, Rosecrance et al. (2015) emphasized the strong negative impact of water deficit on fruit yield. Our study indicates that RDI1 (25% deficit) was the most effective strategy for balancing water conservation with substantial fruit yield, a result that contrasts with the yield-maintenance goal suggested by Iniesta et al. (2009).

Similar to the effects on flowering, the severity of water restriction directly correlates with the reduction in fruit yield. Sustained deficit irrigation (SDI), with its continuous water limitation, imposes a more prolonged and intense stress, leading to more significant yield reductions compared to regulated deficit irrigation (RDI), where water is withheld during specific developmental stages.

The fact that RDI applied between 4-9 weeks after full bloom significantly impacted yield highlights the sensitivity of fruit development during this period, likely encompassing crucial stages of cell division and early fruit growth. The effectiveness of RDI in conserving water while maintaining a considerable yield (as suggested by the study for the 25% deficit) points to the possibility of strategically managing water stress to optimize both water use efficiency and fruit production, although the optimal strategy might vary depending on the cultivar and environmental conditions, as indicated by the contradiction with Iniesta et al.'s (2009) findings.

In conclusion, the reduced fruit yield under deficit irrigation is a consequence of impaired physiological processes at multiple levels, including water relations, photosynthesis, nutrient uptake and transport, hormonal regulation, and carbon allocation. The extent of the yield reduction is directly linked to the severity and timing of the water deficit.

Fatty acid composition varied significantly by irrigation (Table 5). Lower irrigation slightly increased myristic (C14:0), palmitoleic (C16:1), stearic (C18:0), and linoleic (C18:2) acids. Palmitic acid (C16:0) slightly decreased with more stress, while oleic acid (C18:1) significantly decreased under sustained low irrigation versus full irrigation and RDI. Linolenic (C18:3), arachidic (C20:0), and eicosenoic (C20:1) acids showed no significant differences. Conflicting with Motilva et al. (2000) and Ahumada-Orellana et al. (2018) who found no impact, Goncalves et al. (2020) reported minor reductions in palmitoleic, linoleic, and linolenic acids under sustained deficit irrigation. Conversely, Garcia et al. (2013) observed an increase in palmitoleic acid with deficit irrigation and higher oleic but lower linoleic acid in the deficit group compared to the control. Fernandes-Silva et al. (2021) found higher palmitic acid in well-irrigated plants, but no effect of water deficit on oleic and linoleic acids. This study's findings indicate that

water stress, particularly sustained low irrigation, can alter specific fatty acid levels, a result not consistently observed across different studies, highlighting the complexity of this interaction.

The specific increases or decreases in individual fatty acids reflect the differential impact of water deficit on the various biochemical pathways involved in lipid synthesis and modification within the developing olive fruit. The inconsistencies observed across different studies underscore the complexity of these physiological responses and the influence of various experimental and environmental factors.

This study found no significant differences in peroxide, free fatty acids, iodine index, K270, and K232 among irrigation treatments (Table 6). This aligns with Issaoui et al. (2012) and Dag et al. (2015) regarding the iodine index, and Dag et al. (2008) concerning peroxide values. However, Dag et al. (2008) noted increased free acidity with higher irrigation, a finding not replicated here. In contrast, Nanos et al. (2008) reported increased free acidity, K232, and K270 under deficit irrigation in Conservolia olives. Conversely, Garcia et al. (2020) and Siakou et al. (2021) observed no impact of deficit irrigation on these parameters in Arbequina oil, with Fernandes-Silva et al. (2021) even finding decreased peroxide values with increased water stress. Romero-Trigueros et al. (2019) also reported no significant effect of deficit irrigation on K232 and K270. Thus, the impact of deficit irrigation on olive oil quality parameters appears variable and potentially cultivar-specific.

The absence of significant changes in olive oil quality parameters in this study suggests that the applied sustained and deficit irrigation regimes did not induce substantial physiological shifts that negatively impacted lipid metabolism, oxidation, or hydrolysis in the olive fruits. However, the contrasting findings from other research underscore the complex interplay between water availability, cultivar-specific responses, environmental conditions, and the timing and severity of stress in determining olive oil quality. Further research is needed to fully elucidate these interactions and develop irrigation strategies that optimize both yield and oil quality across different cultivars and environments.

Conclusion

Olive trees (*Olea europaea L.*) usually exhibit notable drought tolerance, rendering them a suitable crop for semi-arid climates. Faced with increasing water scarcity in Iran, deficit irrigation strategies are being implemented to mitigate water consumption in olive cultivation. Identifying methods to reduce irrigation without compromising olive yield and oil quality is therefore critical. This study demonstrated that Regulated Deficit Irrigation applied between 4-

9 weeks after full bloom (RDI1, 25% water reduction) and late-season RDI applied two weeks before harvest (RDI3, 50% water reduction) effectively conserved water without significantly impacting fruit yield or oil quality when compared to the fully irrigated control. Over the experimental period, total water consumption in the control group was $8011 \text{ m}^3 \text{ ha}^{-1}$ in 2015 and $7288 \text{ m}^3 \text{ ha}^{-1}$ in 2016. Implementing the RDI1 treatment resulted in a water saving of approximately $400\text{-}500 \text{ m}^3 \text{ ha}^{-1}$, while RDI3 saved $260\text{-}330 \text{ m}^3 \text{ ha}^{-1}$ depending on the year. This reduction in irrigation volume is particularly significant for water-limited semi-arid regions. Furthermore, the application of late-season drought stress (RDI3) led to a modest but notable increase (3-5%) in extracted oil content on a fruit fresh weight basis.

Acknowledgments

This research was supported by the Science and Research Branch, Islamic Azad University, Tehran, Iran. We thank their financial support. Also, we gratefully acknowledge Mr. Shahryar Sayadian for allowing access to their olive orchards where this research was conducted. Thanks to Dr. Bahman Farhadi Bansoleh for his guidance on how to calculate the water requirement of olive trees.

Author Contributions

Samira Ahmadipour: Methodology; Running the experiment; Data curation; writing original draft. Isa Arji: Running the experiment; Methodology; data curation; Supervision; writing, review and editing. Ali Ebadi: Running the experiment; Methodology; Supervision; review and editing. Vahid Abdoosi: Running the experiment; review and editing.

Funding

This research received no external funding.

Conflict of Interest

The authors indicate no conflict of interest in this work.

References

Ahumada-Orellana L, Ortega-Farías S, Poblete-Echeverría C, Searles PS. 2019. Estimation of stomatal conductance and stem water potential threshold values for water stress in olive trees (cv. Arbequina). *Irrigation Science* 37, 461–467. <https://doi.org/10.1016/j.agwat.2016.03.006>

Ahumada-Orellana LE, Ortega-Farías S, Searles PS. 2018. Olive oil quality response to irrigation cut-off strategies in a super-high density orchard. *Agricultural Water Management* 202, 81–88. <https://doi.org/10.1016/j.agwat.2018.02.008>

Allen RG, Pereira LS, Raes D, Smith M. 1998. *Crop evapotranspiration: Guide-lines for computing crop water requirements*. In FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; 300p.

Arbizu-Milagro J, Castillo-Ruiz FJ, Tascon A, Pena JM. 2023. Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard. *Agricultural Water Management* 286, 108393. <https://doi.org/10.1016/j.agwat.2023.108393>

Arzani K, Arji I. 2000. The effect of water stress and deficit irrigation on young potted olive cv. Local-RoghaniRoodbar. *Acta Horticulturae* 537, 879-885. <https://doi.org/10.17660/ActaHortic.2000.537.106>

Bacelar EA, Santos DL, Moutinho-Pereira JM, Gonçalves BC, Ferreira HF, Correia CM. 2006. Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage. *Plant Science* 170, 596–605. <https://doi.org/10.1016/j.plantsci.2005.10.014>

Beya-Marshall V, Herrera J, Fichet T, Trentacoste ER, Kremer C. 2018. The effect of water status on productive and flowering variables in young 'Arbequina' olive trees under limited irrigation water availability in a semiarid region of Chile. *Horticulture Environmental and Biotechnology* 59, 815–826. <https://doi.org/10.1007/s13580-018-0088-x>

Calvo-Polanco M, Ruiz-Lozan, JM, Azcón R, Molina S, Beuzon CR, García JL, Cantos M, Aroca R. 2019. Phenotypic and molecular traits determine the tolerance of olive trees to drought stress. *Plant Physiology and Biochemistry* 139, 521-527. <https://doi.org/10.1016/j.plaphy.2019.04.017>

Caruso G, Rapoport HF, Gucci R. 2013. Long-term evaluation of yield components of young olive trees during the onset of fruit production under different irrigation regimes. *Irrigation Science* 31, 37–47. <https://doi.org/10.1007/s00271-011-0286-0>

Chartzoulakis K, Bertaki M. 2015. Sustainable water management in agriculture under climate change. *Agriculture and Agricultural Science Procedia* 4, 88-98. <https://doi.org/10.1016/j.aaspro.2015.03.011>

Chartzoulakis K, Patakas A, Bosabalidis AM. 1999. Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. *Environmental and Experimental Botany* 42, 113-120. [https://doi.org/10.1016/S0098-8472\(99\)00024-6](https://doi.org/10.1016/S0098-8472(99)00024-6)

Conde-Innamorato P, García C, Villamil JJ, Ibáñez

F, Zoppolo R, Arias-Sibillote M, Ponce De León I, Borsani O, García-Inza GP. 2022. The impact of irrigation on olive fruit yield and oil quality in a humid climate. *Agronomy* 12(2), 313. <https://doi.org/10.3390/agronomy12020313>

Corell M, Martín-Palomo MJ, Girón I, Andreu L, Galindo A, Centeno A, Pérez-López D, Moriana A. 2020. Stem water potential-based regulated deficit irrigation scheduling for olive table trees. *Agricultural Water Management* 242, 106418. <https://doi.org/10.1016/j.agwat.2020.106418>.

Costa JM, Ortuno MF, Chaves MM. 2007. Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. *Journal of Integrative Plant Biology* 49(10), 1421-1434. <https://doi.org/10.1111/j.1672-9072.2007.00556.x>

d'Andria R, Morelli G, Patumi M, Fontanazza G. 2000. Irrigation regime affects yield and oil quality of olive trees. *Acta Horticulturae* 586, 273-276. <https://doi.org/10.17660/ActaHortic.2002.586.52>

Dag A, Ben-Gal A, Yermiyahu U, Basheer L, Nir Y, Kerem Z. 2008. The effect of irrigation level and harvest mechanization on virgin olive oil quality in a traditional rain-fed 'Souri' olive orchard converted to irrigation. *Journal of the Science of Food and Agriculture* 88(9), 1524-1528. <https://doi.org/10.1002/jsfa.3243>.

Dag A, Naor A, Ben-Gal A, Harley G, Zipori I, Schneider D, Birger R, Peres M, Gal Y, Kerem Z. 2015. The effect of water stress on super-high-density 'Koroneiki' olive oil quality. *Journal of the Science of Food and Agriculture* 95(10), 2016-20. <https://doi.org/10.1002/jsfa.6913>. Epub 2014 Oct 14. PMID: 25214192.

Dell'Amico J, Moriana A, Corell M, Giron IF, Morales D, Torrecillas A, Moreno F. 2012. Low water stress conditions in table olive trees (*Olea Europaea* L.) during pit hardening produced a different response of fruit and leaf water relations. *Agricultural Water Management* 114, 11-17. <https://doi.org/10.1016/j.agwat.2012.06.004>

EEC. 1991. European Commission Regulation 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. *Official Journal of the European Community* ELI: <http://data.europa.eu/eli/reg/1991/2568/2015-10-16>

FAO. 2008. <http://www.fao.org/nr/water/ETo.Html>.

FAO. 2021. <https://www.fao.org/faostat/en/#data>.

Fereres E, Martinich DA, Aldrich TM, Castel JR, Holzapfel E, Schulbach H. 1982. Drip irrigation saves money in young almond orchards. *California Agriculture* 36, 12-13.

Fernandes-Silva A, Marques P, Brito T, Canas L, Cruz R, Casal S. 2021. Olive oil composition of Cv. Cobrançosa is affected by regulated and sustained deficit irrigation. *Biology and Life Sciences Forum* 3, 63. <https://doi.org/10.3390/IECAG2021-09735>

Fernandes-Silva A, Oliveira M, Paço TA, Ferreira I. 2018. Deficit irrigation in Mediterranean fruit trees and grapevines: water stress indicators and crop responses. In: Ondrasek G (ed) *Irrigation in Agroecosystems* 51-85. IntechOpen, <http://dx.doi.org/10.5772/intechopen.80365>.

Fernandes-Silva AA, Ferreira TC, Correia CM, Malheiro AC, Villalobos FJ. 2010. Influence of different irrigation regimes on crop yield and water use efficiency of olive. *Plant and Soil*, 333, 35-47. <https://doi.org/10.1007/s11104-010-0294-5>

Fernandez JE. 2014. Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. *Environmental and Experimental Botany* 103, 158-179. <https://doi.org/10.1016/j.envexpbot.2013.12.003>

Fernandez JE, Alcon F, Diaz-Espejo A, Hernandez-Santana V, Cuevas MV. 2020. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard. *Agricultural Water Management* 237, 106074. <https://doi.org/10.1016/j.agwat.2020.106074>

Fernandez JE, Perez-Martin A, Torres-Ruiz JM, Cuevas MV, Rodriguez-Dominguez CM, Elsayed-Farag S, Morales-Sillero A, García JM, Hernandez-Santana V, Diaz-Espejo A. 2013. A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density. *Plant and Soil* 372, 279-295. <https://doi.org/10.1007/s11104-013-1704-2>

Garcia JM, Cuevas MV, Fernandez JE. 2013. Production and oil quality in 'Arbequina' olive (*Olea europaea*, L.) trees under two deficit irrigation strategies. *Irrigation Science* 31, 359-370. <https://doi.org/10.1007/s00271-011-0315-z>

Garcia JM, Hueso A, Gomez-del Campo M. 2020. Deficit irrigation during the oil synthesis period affects olive oil quality in high-density orchards (cv. Arbequina). *Agricultural Water Management* 230, 105858. <https://doi.org/10.1016/j.agwat.2019.105858>

Gholami R, Arji I, Gerdakaneh M. 2013a. Study of irrigation interval and mulch effects on vegetative growth of olive in Kermanshah province. *Iranian Journal of Horticultural Science* 27(1), 74-81. <https://doi.org/10.22067/jhorts4.v0i0.20793>

Gholami R, Arzani K, Arji I. 2013b. Effect of Paclobutrazol (PBZ) and different irrigation amounts on vegetative growth and performance of young olive plants cv. 'Manzanillo'. *Iranian Journal of Horticultural Science* 26(4), 402-408. <https://doi.org/10.22067/jhorts4.v0i0.18247>

Gholami R, Sarikhani H, Arji I. 2016. Effects of deficit irrigation on some physiological and biochemical characteristics of six commercial olive cultivars in field conditions. *Iranian Journal Horticultural Science and Technology*. 17(1), 39-52. <https://doi.org/10.1001.1.16807154.1395.17.1.4.0>

Gholami R, Zahedi SM. 2020. Effects of deficit irrigation and mulching on morpho-physiological and biochemical characteristics of Konservolia olives. *Gesunde Pflanzen* 72, 49-55. <https://doi.org/10.1007/s10343-019-00482-6>

Gholami R, Zahedi SM. 2021. Young olive trees responses (*Olea europaea* cv. Mission) to regulated deficit irrigation regime. *Erwerbs-Obstbau* 63, 255-261. <https://doi.org/10.1007/s10341-021-00564-8>

Giron IF, Corell M, Galindo A, Torrecillas E, Morales D, Dell'Amico J, Torrecillas A, Moreno F, Moriana A. 2015. Changes in the physiological response between leaves and fruits during a moderate water stress in table olive trees. *Agricultural Water Management* 148, 280-286. <https://doi.org/10.1016/j.agwat.2014.10.024>

Girona J, Luna M, Arbones A, Mata M, Rufat J, Marsal J. 2000. Young olive trees cv. *Arbequina* response to different water supplies. Water function determination. *Acta Horticulturae* 586, 277-280. <https://doi.org/10.17660/ActaHortic.2002.586.53>

Gomes-Rico A, Salvador MD, Moriana A, Perez D, Olmedilla N, Ribas F, Fregapane G. 2007. Influence of different irrigation strategies in a traditional Cornicabra cv olive orchard on virgin olive oil composition and quality. *Food Chemistry* 100, 568-578. <https://doi.org/10.1016/j.foodchem.2005.09.075>

Gomez-del-Campo M. 2013. Summer deficit-irrigation strategies in a hedgerow olive orchard cv. 'Arbequina': effect on fruit characteristics and yield. *Irrigation Science* 31, 259-269. <https://doi.org/10.1007/s00271-011-0299-8>

Goncalves A, Silva E, Brito C, Martins S, Pinto L, Dinis LT, Luzio A, Martins-Gomes C, Fernandes-Silva A, Ribeiro C, Rodrigues MÂ, Moutinho-Pereira J, Nunesc FM, Correiaa CM. 2020. Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies. *Journal of the Science of Food and Agriculture* 100(2), 682-694. <https://doi.org/10.1002/jsfa.10064>

Grattan SR, Berenguer MJ, Connell GH, Polito VS, Vossen PM. 2006. Olive oil production as influenced by different quantities applied water. *Agricultural Water Management* 85(1), 133-140. <https://doi.org/10.1016/j.agwat.2006.04.001>

Grijalva-Contreras RL, Macías-Duarte R, Martínez-Díaz, G, Robles-Contreras F, Valenzuela-Ruiz MdeJ, Nuñez-Ramírez F. 2013. Effect of regulated deficit irrigation on productivity, quality and water use in olive cv "Manzanilla. *American Journal of Plant Sciences* 4(12), 109-113. <https://doi.org/10.4236/ajps.2013.412A3013>

Gucci R, Caruso G, Gennai C, Esposto S, Urbani S, Servili M. 2019. Fruit growth, yield, and oil quality changes induced by deficit irrigation at different stages of olive fruit development. *Agricultural Water Management* 212, 88-98. <https://doi.org/10.1016/j.agwat.2018.08.022>

Hueso A, Camacho G, Gomez-del-Campo M. 2021. Spring deficit irrigation promotes significant reduction on vegetative growth, flowering, fruit growth and production in hedgerow olive orchards (cv. Arbequina). *Agricultural Water Management* 248, 106695. <https://doi.org/10.1016/j.agwat.2020.106695>

IOOC, 2002. Methodology for the secondary characterization (agronomic, phonological, pomological and oil quality) of olive varieties held in collection. Conservation, characterization, collection of Genetic Resources in olive (Madrid, Spain: International Olive Oil Council (IOOC)). 23p.

Iniesta F, Testi L, Orgaz F, Villalobos FJ. 2009. The effects of regulated and continuous deficit irrigation on the water use, growth, and yield of olive trees. *European Journal of Agronomy* 30, 258-265. <https://doi.org/10.1016/j.eja.2008.12.004>

Issaoui M, Chehab H, Attia F, Flaminii G, Mechri B, Braham M, Pier Luigi C, Hammami M. 2012. Influence of two maturation stages and three irrigation regimes on Chétoui olive oil quality. *African Journal of Agricultural Research* 6(29), 4124-4130. <https://doi.org/10.5897/AJAR11.1440>

Lavee S, Wodner M. 1991. Factors affecting the nature of oil accumulation in fruit of olive (*Olea Europaea* L.) cultivars. *Journal of Horticultural Science* 66, 583-591. <https://doi.org/10.1080/00221589.1991.11516187>

Ministry of Agriculture Newsletter, 2021. Agricultural statistics. Volume III: Horticultural products, deputy director of planning and economic affairs center for information and communication technology. Tehran, Iran: Ministry of Jihad-agriculture

Molina-Moral JC, Moriana-Elvira A, Pérez-Latorre FJ. 2022. The sustainability of irrigation strategies in

traditional olive orchards. *Agronomy* 12, 64. <https://doi.org/10.3390/agronomy12010064>

Monasterio RP, Banco AP, Caderón FJ, Trentacoste ER. 2021. Effects of pre-harvest deficit irrigation during the oil accumulation period on fruit characteristics, oil yield extraction, and oil quality in olive cv. Genovesa in an arid region of Argentina. *Agricultural Water Management* 252, 106901. <https://doi.org/10.1016/j.agwat.2021.106901>.

Moriana A, Perez-Lopez D, Prieto MH, Ramírez-Santa-Pau M, Perez-Rodriguez JM. 2012. Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. *Agricultural Water Management* 112, 43-54. <https://doi.org/10.1016/j.agwat.2012.06.003>

Motilva MJ, Tovar MJ, Romero MP, Alegre S, Girona J. 2000. Influence of regulated deficit irrigation strategies applied to olive trees (*Arbequina* cultivar) on oil yield and oil composition during the fruit ripening period. *Journal of Agricultural and Food Chemistry* 80(14), 2037-2043. [https://doi.org/10.1002/1097-0010\(200011\)80:14<2037::AID-JSFA733>3.0.CO;2-0](https://doi.org/10.1002/1097-0010(200011)80:14<2037::AID-JSFA733>3.0.CO;2-0)

Nanos GD, Pliakoni E, Daenas D, Amodio ML, Colelli G. 2008. Effect of deficit irrigation on olive and olive oil quality during fruit storage. In: Santini A, Lamaddalena N, Severino G, Palladino M (eds) *Irrigation in Mediterranean Agriculture: Challenges and Innovation for the next decades*. Bari: CIHEAM pp. 77-83 (Options Mediterranean's: Série A. Séminaires Méditerranéens; n. 84) Url={<https://api.semanticscholar.org/CorpusID:55246058>}

Nikbakht J, Taheri M, Sakkaki M. 2011. Effect of continues deficit irrigation on yield and quality of Koroneiki olive (*Olea europaea* L.) cultivar. 21th International Congress on Irrigation and Drainage 15-23 October, Tehran, Iran. pp 465-472.

Ouledali S, Ennajeh M, Ferrandino A, Khemira H, Schubert A, Secchi F. 2019. Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants. *South African Journal of Botany* 121, 152-158. <https://doi.org/10.1016/j.sajb.2018.10.024>

Patumi M, Dandria R, Fontanazza G, Morelli G, Giori P, Sorentino G. 1999. Yield and oil quality of intensive trained trees of three cultivars of olive (*Olea europaea* L.) under different irrigation regimens. *The Journal of Horticultural Science and Biotechnology* 74(6), 729-737. <https://doi.org/10.1080/14620316.1999.11511180>

Rapoport HF, Costagli G. 2004. The effect of water deficit during early fruit development on olive fruit morphogenesis. *Journal of the American Society for Horticultural Science* 129(1), 121-127. <https://doi.org/10.21273/JASHS.129.1.0121>

Rapoport HF, Hammamia SBM, Martins P, Oscar Perez-Priegoa B, Francisco Orgaza C. 2012. Influence of water deficits at different times during olive tree inflorescence and flower development. *Environmental and Experimental Botany* 77, 227-233. <https://doi.org/10.1016/j.envexpbot.2011.11.021>

Romero-Trigueros C, Vivaldi GA, Nicolás EN, Paduano A, Salcedo FP, Camposeo S. 2019. Ripening indices, olive yield and oil quality in response to irrigation with saline reclaimed water and deficit strategies. *Frontiers in Plant Science* 10, 1243. <https://doi.org/10.3389/fpls.2019.01243>

Rosecrance RC, Krueger WH, Milliron L, Bloese j, Garcia C, Mori B. 2015. Moderate regulated deficit irrigation can increase olive oil yields and decrease tree growth in super high density Arbequina olive orchards. *Scientia Horticulturae* 190, 75-82. <https://doi.org/10.1016/j.scienta.2015.03.045>

Siakou M, Bruggeman A, Eliades M, Zoumides C, Djuma H, Kyriacou MC, Emmanouilidou MG, Spyros A, Manolopoulou E, Moriana A. 2021. Effects of deficit irrigation on 'Koroneiki' olive tree growth, physiology, and olive oil quality at different harvest dates. *Agricultural Water Management* 258, 107200. <https://doi.org/10.1016/j.agwat.2021.107200>

Tadayon MS, Hosseini SM. 2022. Effect of irrigation regimes and foliar nutrition on flower development and water productivity of olive (*Olea europaea* L. cv. 'Shengeh'). *Journal of Plant Growth Regulation*, 42(2), 1-13. <https://doi.org/10.1007/s00344-022-10580-x>

Tognetti R, d'Andria R, Lavivi A, Morelli G. 2006. The effect of deficit irrigation on crop yield and development of *Olea europaea* L. (cvs Frantoio and Leccino). *European Journal of Agronomy* 25: 356-364. <https://doi.org/10.1016/j.eja.2006.07.003>

Tognetti R, d'Andria R, Morelli G, Alvino A. 2005. The effect of deficit irrigation on seasonal variations of plant water use in *Olea europaea* L. *Plant and Soil* 273, 139-155. <https://doi.org/10.1007/s11104-004-7244-z>

Trentacoste ER, Calderon FJ, Contreras-Zanessi O, Galarza W, Banco AP, Puertas CM. 2019. Effect of regulated deficit irrigation during the vegetative growth period on shoot elongation and oil yield components in olive hedgerows (cv. Arbosana) pruned annually on alternate sides in San Juan,

Argentina. Irrigation Science 37, 533–546.
<https://doi.org/10.1007/s00271-019-00632-8>.

Vaio CD, Marallo N, Marino G, Caruso T. 2013. Effect of water stress on dry matter accumulation and partitioning in pot-grown olive trees (cv 'Leccino' and 'Racioppella'). Scientia Horticulturae 164: 155–159. <https://doi.org/10.1016/j.scienta.2013.09.008>.

Zeleke K, Mailer R, Eberbach P, Wunsche J. 2012. Oil content and oil quality of nine olive (*Olea europaea* L.) varieties affected by irrigation and harvest times. New Zealand Journal of Crop and Horticultural Science 40(4), 1-12.
<https://doi.org/10.1080/01140671.2012.662159>