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Article type: 

 The application of brassinosteroids (BRs) in crop production is gaining 
increasing attention for their potential to enhance yield and productivity. 
This study examined the effects of two BRs on the growth of Lactuca sativa 
var. ‘Divina’ under both soil and hydroponic conditions. The treatments 
included 24-epibrassinolide (EP24) and a spirostan analogue-based 
formulation (BB16). Both compounds promoted growth, with EP24 
exerting a stronger effect overall. In soil, EP24 increased canopy fresh 

weight by 107% and root fresh weight by 34%, while in hydroponics the 
increases were 60% and 110%, respectively. Canopy dry weight rose by 
35% in soil and 76% in hydroponics, whereas root dry weight increased by 
42% and 118%, respectively, in response to EP24. Leaf area expanded by 
34% (soil) and 28% (hydroponics) with BB16, and by 68% (soil) and 33% 
(hydroponics) with EP24. Leaf number increased by 24% (soil) and 34% 
(hydroponics) with BB16, and by 29% and 56% with EP24. Chlorophyll 
content in hydroponically grown plants also improved, showing increments 

of 37% with BB16 and 40% with EP24 compared to controls. Both BRs 
promoted root development and enhanced postharvest performance. Under 
hydroponic cultivation, canopy loss in cut leaves was reduced by 18% with 
BB16 and 22% with EP24, while whole-canopy loss decreased by 25% and 
49%, respectively. In soil-grown plants, EP24 reduced whole-canopy loss 
by 35%. Overall, these results highlight the potential of BRs as sustainable 
bioinputs to stimulate lettuce growth and minimize postharvest losses. 
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Introduction
With the continuous growth of the global population, 

technological innovation in agriculture has become 

essential to ensure food security and address the 

depletion of energy and productive resources. 

Advances in agricultural production are increasingly 

directed toward developing strategies that 

sustainably increase yields while safeguarding the 

environment. In this context, agriculture and 

biotechnology are becoming progressively 

interconnected in the search for solutions that can 

meet rising food demands. 

 
COPYRIGHT 
© 2026 The author(s). This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other medium 

is permitted, provided the original author(s) and source are cited, in accordance with accepted academic practice. No permission is required from the authors or the publishers. 

As the world population is projected to reach 

approximately 9.7 billion by 2050 (Gu et al., 2021), 

it is critical to adopt practices that reduce reliance on 

agrochemicals and toxic compounds, thereby 

minimizing environmental pollution, especially 

under constantly changing climatic conditions 

(Godfray et al., 2010; Wang et al., 2021). One 

promising approach involves the use of bioinputs. 

These biostimulants, which include plant-derived 

compounds and microorganisms, stimulate natural 

processes that enhance nutrient absorption, improve 
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tolerance to biotic and abiotic stress, and increase 

crop quality (Wang et al., 2022). They are commonly 

applied as foliar sprays or directly to the soil (du 

Jardin et al., 2020; Wozniak et al., 2020). 

The combination of bioinputs with hydroponic 

cultivation systems is emerging as a promising 

strategy, offering synergistic benefits from both 

technologies. Nonetheless, research on the direct 

addition of biostimulants to hydroponic nutrient 

solutions remains limited. 
Lettuce (Lactuca sativa L.) is one of the most widely 

consumed vegetables worldwide. An annual 

herbaceous plant native to temperate regions, it 

represents the most significant member of leafy 

vegetables, with great diversity resulting from 

differences in leaf types and growth habits. In 

Argentina, lettuce is the leading leafy vegetable crop, 

cultivated almost year-round across most of the 

country, making it a key component of regional 

economies (Bilbao and Frezza, 2022). 

Crop management practices often rely on chemically 
synthesized fertilizers and pesticides to prevent 

losses caused by diseases and pests. However, the 

harmful effects of excessive or improper use of these 

compounds on both the environment and human 

health are well documented, and their misuse further 

exacerbates predictable damage (Schmidt et al., 

2022). This undesirable situation has led consumers 

to increasingly demand agricultural practices that 

produce healthier and more sustainable fruits and 

vegetables (Moncada et al., 2021). In response, 

farmers are being encouraged to adopt strategies that 
not only preserve the environment but also optimize 

the use of valuable resources, such as water, over the 

long term (Moncada et al., 2021). 

In this context, and as a contribution to sustainable 

agriculture, we investigated the effects of 

brassinosteroids (BRs) on the growth of lettuce 

plants cultivated under both soil and hydroponic 

(“floating”) systems, with the aim of identifying the 

most suitable cultivation method within an efficient 

and sustainable management framework. For this 

study, we employed two types of BRs: a formulation 

based on a chemically synthesized spirostan 
analogue of the brassinosteroid DI-31 (BB16), and a 

naturally occurring brassinosteroid, 24-

epibrassinolide (EP24). 

 

Materials and Methods  
Plant materials and cultivation systems 
Lettuce (Lactuca sativa L.) of the ‘Divina’ variety 

was used in this study. Two cultivation systems were 

employed. Field production was conducted in raised 

beds with a solid substrate, while hydroponic 

production was carried out using a floating system. 

The hydroponic setup consisted of a pool-type 

reservoir filled with nutrient solution, where plants 

floated on high-density expanded polystyrene plates. 

The nutrient solution used was Hakaphos® orange 

15-5-30 (+2), which provides 15 parts nitrogen, 5 

parts phosphorus, and 30 parts potassium, along with 

secondary nutrients (sulfur and magnesium; N-P2O5-

K2O(+S+MgO)) and micronutrients (B, Cu, Fe, Mn, 

Mo, Zn) chelated with EDTA. Aeration was 

maintained using a compressor that continuously 

pumped air into the solution to ensure adequate 

oxygen levels.  

 

Treatment with BRs 
Seven days after planting, plants in both cultivation 

systems were sprayed with either BB16 or EP24 at a 

concentration of 0.1 mg L–1 until runoff 

(approximately 1.5 mL per plant). After 45 days, 

plants were evaluated according to morphological 

parameters. 

 

Parameters analyzed in roots 
At harvest, root length (cm) was measured using a 

Wembley-5940 digital caliper. Fresh and dry root 

weights (g) were determined, with dry weights 

obtained after drying samples in a forced-ventilation 

oven at 60 °C until constant weight was reached. 

Root surface area was measured following the 

calcium nitrate method (Carley and Watson, 1966). 

 

Parameters studied in aerial parts 
To evaluate the effects of BB16 and EP24 on the 

aerial parts of lettuce plants, several parameters were 

measured, including leaf number, greenness index, 

and fresh and dry weights of the shoot. The 

greenness index was determined using a Minolta 

SPAD-502 chlorophyll meter, and results were 

expressed as SPAD values, which are proportional to 

the chlorophyll content of leaves (Güler et al., 2006). 

Leaf area was quantified using ImageJ software 
(Schneider et al., 2012), while leaf relative water 

content (LRWC) was determined according to the 

method described by González and González-Vilar 

(2001). All measurements were conducted on 20 

plants per treatment, and the experiment was 

performed in triplicate. To further assess the impact 

of BRs on postharvest quality in a commercial 

context, weight loss of lettuce leaves was evaluated 

after storage at 4 °C for 5 days. 

 

Statistical analysis 
Data was obtained from three independent 

experiments, each using 20 replicates, and were 

expressed as mean ± standard error. InfoStat 

software (Di Rienzo et al., 2013) was used to perform 

the statistical analysis of the data. One-way analysis 

of variance (ANOVA) test was performed, and the 

means were separated using the Tukey test for P < 

0.05.  
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Results 
After 45 days of treatment with BB16 or EP24, the 

physiological status of lettuce plants was evaluated. 

Plants treated with EP24 developed noticeably larger 

canopies compared to both the control and BB16-

treated plants (Fig. 1). In addition, under hydroponic 

conditions, both BB16 and EP24 promoted greater 

root growth relative to the control (Fig. 2). 

 

 

Fig. 1. Lettuce plants (variety ‘Divina’) treated with brassinosteroids after 40 d of testing. (A) Plants grown in soil and (B) 
plants grown in hydroponic conditions using the floating system. 

 

 

Fig. 2. Roots of lettuce plants, untreated (control) and treated with BB16 or EP24, grown under hydroponic conditions using 
the floating system. The scale bars correspond to 5 cm. 
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The application of EP24 induced a significant 

increase in lettuce biomass compared with both the 

control and BB16-treated plants. In soil-grown 

plants, canopy fresh weight increased by 107%, 

while in hydroponic conditions it rose by 60%. Root 

fresh weight also increased, by 34% in soil and 110% 

in hydroponics. Similarly, significant increases were 

observed in dry biomass. Canopy dry weight 

increased by 35% in soil and 76% in hydroponics, 

whereas root dry weight increased by 42% and 

118%, respectively (Fig. 3). 

 

 

Fig. 3. Effect of treatment with brassinosteroids (BB16 and EP24) on the biomass of lettuce plants grown in soil and 
hydroponics using a floating system. Capital letters correspond to values of the (A) fresh weight of the canopy; (B) roots; (C) 

dry weight of the canopy; (D) and roots. Mean values ± SE were obtained from three independent experiments (n = 20). 

Analysis of variance (ANOVA) followed by Tukey’s test was performed using InfoStat/L software (P < 0.05). Different 
letters represent statistically significant differences. 

 

 

When evaluating aerial parameters, plants treated 
with BRs showed marked improvements compared 

to controls. In soil-grown plants, leaf area increased 

by 34% with BB16 and 68% with EP24, whereas in 

hydroponics the increases were 28% and 33%, 

respectively (Fig. 4A). Leaf number also increased in 

response to BR treatments: in soil, BB16 and EP24 

led to increases of 24% and 29%, respectively, while 

in hydroponics the increases were 34% and 56% 

(Fig. 4B). Similarly, hydroponically grown plants 

treated with BB16 and EP24 exhibited higher 

chlorophyll content, with increases of 37% and 40%, 

respectively, compared to controls (Fig. 4C). Leaf 
relative water content (LRWC) also improved. In 

soil, LRWC increased by 11% with BB16 and 16% 

with EP24, while under hydroponic conditions, only 
EP24 produced an increase (11%) (Fig. 4D). 

Evaluation of root length and surface area showed 

that both BRs promoted root elongation in plants 

under both cultivation systems. In soil-grown plants, 

root length increased by 43% with BB16 and 47% 

with EP24 compared to controls, while in 

hydroponics the increases were 23% and 39%, 

respectively. Root surface area was also enhanced by 

BR treatments. In soil, EP24 induced a 55% increase 

relative to the control groups, whereas in 

hydroponics the root surface area increased by 42% 

with BB16 and 149% with EP24 (Fig. 5). 
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Fig. 4. Effect of BB16 and EP24 treatments on growth parameters analyzed in the aerial part of lettuce plants grown in soil 
and hydroponic floating conditions. The parameters studied are: (A) leaf area; (B) number of leaves; (C) greenness index; 
and (D) relative water content. Mean values ± SE were obtained from three independent experiments (n = 20). Analysis of 

variance (ANOVA) followed by Tukey’s test was performed using InfoStat/L software (P < 0.05). Different letters represent 

statistically significant differences. 
 

 

Fig. 5. Effect of treatment with brassinosteroids (BB16 and EP24) (A) on root length and (B) surface area of lettuce plants 
grown in soil and hydroponics using a floating system. Mean values ± SE were obtained from three independent experiments 

(n = 20). Analysis of variance (ANOVA) followed by Tukey’s test was performed using InfoStat/L software (P < 0.05). 
Different letters represent statistically significant differences. 

 

 

To determine the influence of BRs on postharvest 

performance, weight loss was quantified in both 

detached leaves and intact canopies. In cut leaves 
obtained from hydroponically cultivated plants, 

treatments with BB16 and EP24 reduced weight loss 

by 18% and 22%, respectively, relative to untreated 

controls. Similarly, whole-canopy weight loss in 

hydroponically grown plants was reduced by 25% in 

response to BB16 and by 49% following EP24 

application. In contrast, in soil-grown plants, only 
EP24 elicited a significant reduction in postharvest 

weight loss, decreasing canopy loss by 

approximately 35% compared with controls (Fig. 6). 
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Fig. 6. Effect of treatment with BB16 and EP24 on postharvest preservation of lettuce leaves from plants grown in soil and 
hydroponics using a floating system. Weight loss was evaluated under two conditions: (a) whole leaves and (b) cut leaves. 

Mean values ± SE were obtained from three independent experiments (n = 20). Analysis of variance (ANOVA) followed by 
Tukey’s test was performed using InfoStat/L software (P < 0.05). Different letters represent statistically significant 

differences. 

 

Discussion 
Lettuce is one of the most widely cultivated 

hydroponic vegetables, and numerous studies have 

demonstrated its high yield and quality when grown 

under soilless systems (Qadeer et al., 2020; Wang et 
al., 2023). In the present study, we evaluated the 

effects of two brassinosteroids (BRs)—a natural 

compound, 24-epibrassinolide (EP24), and a 

synthetic analogue, BB16—on the growth of lettuce 

plants cultivated in soil and in hydroponic conditions 

using the floating tray system. 

The use of BRs as bioinputs has gained increasing 

attention due to their ability to promote plant growth, 

improve crop quality, and enhance yields. These 

compounds represent a sustainable alternative to 

conventional inputs, as they are plant-derived, 
environmentally safe, and highly promising as plant 

growth regulators (Li et al., 2021; Faizan et al., 2024; 

Garrido-Auñón et al., 2024). Our results demonstrate 

that both BB16 and EP24 exerted growth-promoting 

effects in lettuce, with EP24 producing the strongest 

response. Treated plants exhibited larger overall size 

compared with untreated controls, and EP24 

consistently induced greater increases in both fresh 

and dry biomass of shoots and roots. 

We attribute these effects to stimulation of cell 

division and differentiation processes, which are 

known to be regulated by BRs, as previously 
reported by Kartal et al. (2009) and Kang and Guo 

(2011). The growth-promoting role of BRs has been 

extensively documented in multiple crop species, 

including Vigna radiata L. (Kumar et al., 2023), 

Fragaria ananassa (Furio et al., 2022), Zea mays L. 

(Zhang et al., 2022), Gossypium hirsutum (Chakma 

et al., 2021), and Prunus armeniaca (Al-Saif et al., 

2023). Evidence also exists for leafy vegetables: in 

spinach, bioinputs based on BRs combined with 

Bacillus mucilaginosus produced a marked growth-

promoting effect (Zhang et al., 2023). In lettuce 

specifically, biostimulants combining BRs with plant 

growth-promoting bacteria such as Bacillus 

velezensis and Azospirillum brasilense have been 

shown to increase yields by 20–40%, consistent with 

the findings of the present study (Benavides et al., 
2023). Taken together, our results are in agreement 

with previous studies and further support the broad-

spectrum efficacy of BRs in enhancing plant growth 

and productivity across a wide range of crops.  

The efficacy of the BRs used in this study (EP24 and 

BB16) was further evidenced by the significant 

increase in both leaf count and leaf area in treated 

plants (Fig. 3). These findings are consistent with 

previous reports. For example, Arabidopsis thaliana 

brassinosteroid-deficient mutants (det2), which 

exhibit impaired BR perception, develop smaller 
leaves; however, this phenotype can be reversed by 

exogenous application of brassinolide (BL) at 0.2 

µM (Nakaya et al., 2002). More recently, Zhang et 

al. (2021) demonstrated that epi-brassinolide (EBL) 

treatment in tobacco increased leaf size and 

expansion by stimulating cell division and cell 

expansion, accompanied by elevated endogenous 

levels of BR, IAA, and GA3, as well as the 

upregulation of genes associated with cell growth. 

Similar stimulatory effects of BRs on leaf number 

have also been documented across several crops, 

including strawberry (Furio et al., 2019), broad bean 
(Pinol and Simon, 2009), coleus (Swamy and Rao, 



Nicolás Furio et al.,                                                         Int. J. Hort. Sci. Technol. 2026 13 (4): 675-684 

 

681 

2011), sugarcane (Chavan et al., 2018), and potato 

(Singh et al., 2021). 

With respect to root development, treatment with 

both compounds enhanced root length under both 

cultivation systems, while root surface area was 

significantly increased under hydroponic conditions. 

In soil, however, only EP24 produced a notable 

increase in root surface area. These results suggest 

that the growth-promoting effects of BRs differ not 

only between the compounds themselves but also in 
relation to the cultivation method. 

Analysis of photosynthetic parameters further 

revealed that under hydroponic conditions, BR-

treated plants exhibited higher SPAD values 

compared with untreated controls. This effect was 

not observed in soil-grown plants, indicating that 

hydroponic conditions may potentiate the 

physiological response to BRs. The increase in 

chlorophyll content observed here is in agreement 

with earlier reports showing that BRs stimulate 

pigment synthesis (Bajguz, 2000). Yu et al. (2004) 
also demonstrated that spraying spinach with 24-

epibrassinolide (0.1 mg L–1) increased chlorophyll 

fluorescence, while subsequent studies confirmed 

that BRs enhance the quantum yield of photosystem 

II and stimulate ribulose-1,5-bisphosphate 

carboxylase/oxygenase activity (Zhang et al., 2008). 

Taken together, our results indicate that BB16 and 

EP24 exert positive effects on photosynthetic 

efficiency and pigment accumulation in lettuce, 

though these effects were more pronounced under 

hydroponic cultivation. Interestingly, despite these 
improvements, no significant differences in the 

greenness index were detected between treated and 

control plants, suggesting that chlorophyll content 

enhancement may not directly translate into visible 

changes in leaf coloration. 

Another physiological parameter evaluated was the 

relative water content (RWC) of the leaves, which 

was consistently higher in hydroponically grown 

plants compared with soil-grown plants. Application 

of both compounds further enhanced RWC relative 

to control plants under both cultivation systems (Fig. 

3d). The increase in RWC observed in BR-treated 
lettuce may be partly attributed to the stimulation of 

root development, as evidenced by increased root 

length and root surface area. This is consistent with 

previous findings in barley, where application of 

homobrassinolide (HBR) significantly promoted 

primary root growth, resulting in a twofold increase 

in biomass at 1.0 μM compared with untreated 

controls (Kartal et al., 2009). Alternatively, the 

enhanced water status may also be linked to BR-

mediated stimulation of plasma membrane H⁺-

ATPase activity (Khripach et al., 2003), which 
facilitates ion uptake and water absorption (Sairam, 

1994). Together, these findings indicate that BR 

treatment improves plant water relations, a key 

determinant of lettuce leaf quality. 

The postharvest assessment further demonstrated a 

beneficial effect of both compounds on reducing leaf 

weight loss, with EP24 showing the strongest effect 

(Fig. 6). Shelf life of leafy vegetables is influenced 

by a range of preharvest and postharvest factors, 

including cultivation conditions, processing, 

disinfection, chemical treatments, and packaging 

(Hunter et al., 2017; Mampholo et al., 2019; 

Damerum et al., 2020). Mechanical injuries during 

cutting are particularly detrimental, as they 
accelerate respiration, deplete nutritional quality, 

induce phenolic accumulation, and trigger tissue 

darkening, thereby reducing shelf life (Peng et al., 

2020). Various preharvest strategies have been 

reported to improve lettuce storability, such as 

reducing canopy temperature prior to harvest (Bilbao 

and Frezza, 2022), optimizing light intensity (Hooks 

et al., 2022; Shen et al., 2024), or applying organic 

acids (Akbas and Ölmez, 2007). In our study, the 

application of EP24 and BB16 markedly reduced 

weight loss in lettuce leaves, whether whole or 
minimally processed. Notably, this effect was absent 

in cut leaves from soil-grown plants, whereas under 

hydroponic cultivation, both compounds 

significantly decreased weight loss in whole and cut 

leaves, indicating a cultivation system-dependent 

response. 

 

Conclusion 
The results of this study support the potential of BRs 

as valuable bioinputs for sustainable lettuce 

production, enabling improved yields without 

adverse environmental impact. The observed 

modulation of multiple growth-related parameters 

suggests that these compounds may influence the 

regulation of diverse hormonal signaling pathways 

governing tissue proliferation. Further research is 

required to elucidate the mechanisms underlying 

these effects, particularly their impact on hormonal 
homeostasis and the expression of growth-associated 

genes.  
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