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Article type: 

 This study evaluated the efficiency of a handheld hyperspectral Imaging 
(HSI) system coupled with biologically inspired unsupervised algorithms 
as a screening technique for the authenticity evaluation of naturally-grown 
Nepeta crispa Willd (N. crispa) samples from on-farm cultivated samples. 
The volatile oils of 25 samples were isolated with hydrodistillation, and 
then the Gas Chromatography (GC) analyses were done to determine the 
total Volatile Organic Compounds (VOCs) as the reference data. On the 
other hand, the samples’ reflectance spectra were captured using the HSI 
camera and pre-processed using the Savitzky-Golay (SG) algorithm. 

Principal Component Analysis (PCA) was then applied for the visual 
discrimination of the samples and the data reduction. Next, two 
unsupervised algorithms, crisp clustering by the self-organizing Map 
(SOM) and an automatic clustering based on the artificial bee colony 
(ABC), were applied to perform the real clustering of the samples. The 
SOM unified distance matrices explained the changes in spectral 
characteristics between the N. crispa samples and indicated the variation of 
the sample’s VOCs following the GC results. The automatic clustering by 

the ABC algorithm illustrated its capability to cluster the two main sample 
groups according to the sample’s spectra. The HSI system combined with 
the ABC algorithm will provide a novel nondestructive and rapid technique 
for evaluating the authenticity of naturally-grown Nepeta crispa Willd 
samples. 
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Introduction
Nepeta crispa Willd. (N. crispa) is one of the best 

well-known medicinal and aromatic plants in the 

Nepeta genus. This plant has aerial parts with a sweet 
odor which is traditionally used for making an 

infusion (herbal tea), floral water, and different 

beverages. Due to its many nutritional and medicinal 

properties such as stomach pain relief, febrifuge, 

sedative, relaxant, carminative, and restorative tonic 

for nervous and respiratory disorders, it has been 

used in phytotherapy (Sefidkon et al., 2006). The 

extract of N. crispa is also used in ointments to heal 

skin disorders of eczema type and as a diuretic with 

slight bacteriostatic activity (Mojab et al., 2009). 
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Therefore, the consumption of N. crispa and its 

products has gradually increased over the last 

decades. Due to its striking market, it has been 
cultivated on farms in different geographical origins 

besides its natural production. Many studies have 

proved that the quality of medicinal plants is 

determined by their total VOCs (Rehman et al., 

2020). Although the composition of essential oils of 

medicinal plants and the percentage of total VOCs, 

are mainly made by directing genetic processes, but 

are significantly influenced by environmental factors 

resulting from geographical origins and cultivation 

conditions (Nejadhabibvash et al., 2018). Cultivation 
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conditions such as differences in height, rainfall, soil 

type, and environmental stresses usually affect the 

quantity and quality of N. crispa plant active 

ingredients. The percentage of the VOCs of N. crispa 

samples that have been naturally grown and 

harvested in mountainous areas is much more than 

samples harvested from farms (Karami et al., 2020). 

In the N. crispa market, consumers know that natural 

products are superior in quality and seeking them. 

Both types of products are almost similar and cannot 
be easily categorized by human vision and smell 

power except by doing lab-based analyses such as 

gas chromatography (GC) or high-performance 

liquid chromatography (HPLC). Consequently, there 

is a possibility that low-quality products will be 

marketed as natural or high-quality products. Thus, 

it is important to pay more attention to inspecting and 

monitoring the distribution chain of N. crispa.  

During the past three decades, different analytical 

tools and methods have been developed for the 

quality control of medicinal plants. These methods 
are based on GC or liquid chromatography (LC) 

(Petrakis et al., 2017). Although these conventional 

analytical methods are accurate and readily 

available, they are often expensive, time-consuming, 

and require professional knowledge of the operation. 

Also, these systems cannot be used outside of the 

laboratory, industrially, and in real-time, especially 

in the retail markets during the distribution of the 

products (Kiani et al., 2018 and 2023). HSI is a type 

of screening technique that represents a perfect 

combination of conventional spectroscopy and 
regular imaging. It can simultaneously provide both 

spectral and visual information about each pixel in 

the image of the sample (Qin et al., 2013). The 

spectral data have the potential to extract detailed 

internal and external quality information and the 

chemical composition of agro-products. Many 

research studies have proved the capability of the 

HSI system for evaluating plants and spices. Some of 

the newest documented estimating nitrogen content 

of lettuce leaves (Odabas et al., 2017); measuring 

water content level on leaves and salt stress 

tolerances of soybean leaves (Sytar et al., 2017); 
identification of papaya seeds in black pepper 
(Orrillo et al., 2019); characterization of fermented 

cocoa beans from different origins (Acierno et al., 

2019); Nutmeg authenticity evaluation (Kiani et al., 

2019); Non-destructive determination of volatile oil 

and moisture content and discrimination of 

geographical origins of Zanthoxylum bungeanum 

Maxim (Ke et al., 2020); prediction of the oleic acid 

content of rapeseed (Liu et al., 2021); rapid detection 

of the nutrient content of hydroponically grown 

lettuce cultivars (Eshkabilov et al., 2021); predicting 
micronutrients of wheat (Hu et al., 2021), prediction 

of essential oil content in spearmint (Van Haute et 

al., 2023); Geographical origin differentiation and 

quality determination of saffron (Kiani et al., 2023); 

and rice authenticity evaluation (Edris et al., 2024 

and 2025). Given the proven benefits of the HSI 

system, it can be stated that HSI technology is 

effective and applicable to the medicinal and 

aromatic plant industries. In HSI applications, 

supervised algorithms are more common for 

identifying the sample’s varieties and authenticity or 

quality evaluation. The supervised methods use 

several labeled samples to train the algorithms and 

make a descriptor map between the spectral 

fingerprints and their identified characteristics. In 

these methods, the developed models are created to 

predict unknown sample properties. Using the 

constructed models at different times deals with two 

big challenges because training the models with 

spectral information that indicates all the pertinent 
characteristics is difficult. First, the supervised 

models might be affected by the sensitivity of the 

HSI camera sensors or illumination intensity and 

they might not be reproducible in responses for a 

target sample at two times. Second, in real 

applications, the system might face unknown 

samples with unknown patterns that the models were 

not trained for. Hence, the supervised model requires 

to be renewed frequently. Furthermore, applying 

different postharvest processes including processes 

from transportation to storage could affect N. crispa 

quality and of course its spectra. To solve this 
problem, unsupervised approaches could act as a 

capable tool for evaluating the samples. The 

unsupervised algorithms perform the real clustering 

of the spectral patterns only based on the discovery 

of undefined input data at the moment (Jose-Garcıa 

and Gomez-Flores, 2016). These algorithms are 

known for less intricacy and are fast because all the 

spectral fingerprints (input data) are fed to the 

models at once and grouping is done in real-time. 

This study aimed to propose a reliable screening 

approach to discriminate natural N. crispa from the 
samples cultivated on the farms. In this regard, 

hyperspectral images of the N. crispa samples were 

captured, preprocessed, reduced, and processed 

using two bio-inspired unsupervised algorithms.  

 

Materials and Methods  
Plant materials and reference values 

measurement 
Fifty grams of aerial parts of 25 N. crispa samples 

were collected in the full flowering stage from three 

origins where it grows naturally and from two farms 

(5 samples from each origin/farm). Naturally grown 

samples were procured from three mountainous 
areas (Gashani, Arzanfood, and Pisteski) from 

Hamedan province, Iran. This province is the natural 

habitat of the plant. Other samples were cultivated 

and harvested on two farms (planted in similar 

growing conditions except the climate) in Tehran and 

Hamedan provinces, Iran. The samples were 
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harvested at a similar date and then dried in the shade 

to reach down to 10% moisture content (dry-based, 

MCd.b). The samples were kept at a constant 

temperature of 4 °C before the measurements. The 

volatile oils of all samples were isolated with 

hydrodistilation, GC analyses were done, and the 

total VOCs of the samples, as well as components of 

oils, were determined. A detailed description of the 

GC analyses of the samples was provided by Karami 

et al. (2021). Table 1 shows the specifications and 

properties of the prepared samples (S1-S5) and the 

percentage of total volatile oils in each sample. These 

results also showed that geographical origins 

significantly affected the percentage of total VOCs 

influenced by environmental factors and cultivation 

conditions.  
 

Table 1. Plant materials and their specifications. 

AP: Aerial parts.  

 

Hyperspectral imaging device and data 

collection  
A portable HSI system was used to scan and collect 

spectral images of the samples. The system includes 

a portable VIS-NIR hyperspectral imager (Specim 

IQ, Specim, Spectral Imaging Ltd) that covers the 

spectral range from 400 to 1000 nm at 3 nm 

increments and 204 spectral bands with spatial data 

resolution of 512×512 pixels (hypercube 

dimensions: 512×512×204). The system also 

includes two halogen-based illumination sources 

recommended by Specim Co. that cover the full 400 

to 1000 nm range for smooth lighting of the field of 

view surface of the camera. It could be used as a 

table-based device in the laboratory or as a portable 

screening system in stores or markets. Figure 1 

shows the schematic representation of the developed 

HSI system, spectra hypercube, and extracted 

spectra.  The plant samples were ground into small 

parts, sieved with a 2 mm sieve size, and put in petri 
dishes (5 cm in diameter and 2 cm in height). To 

prevent light scattering, the samples were pressed to 

be flatted before scanning. The spectral reflectance 

of 12 samples was recorded at the same time using 

the camera recording Software. Then, a three-

dimensional (3-D) hypercube containing 204 image 

layers was obtained. 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

Fig. 1. Schematic representation of the intelligent HSI system developed for detecting non-authenticity in N. crispa. 

Group of 

Samples 
Origins 

Growth 

conditions 

Drying 

methods 
latitude longitude 

Average 

VOCs (%) 

S1 

Hamedan 

Gashani Naturally 
grown 
(AP) 

Shade 

34•-35'-59.857'' 48•-34'-38.988'' 1.97 

S2 Arzanfood 34•-39'-26.74'' 48•-25'-52.724'' 2.09 

S3 Pisteski 34•-43'-7.115'' 48•-26'-13.784'' 1.82 

S4 Tehran On-farm 
cultivated 

(AP) 

35.6892° N 51.3890° E 0.28 

S5 Hamedan 34.7608° N 48.3988° E 0.98 

Expert classification 

using unsupervised 

algorithm  

Naturally grown 

samples (High% of 

VOCs) 

On-farm cultivated 

samples (Low% of 

VOCs) 

HSI camera 

A Hyperspectral Image 

(hypercube) 
Spectra 
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Before scanning the target area, the camera recorded 

the black-and-white references and automatically 

makes the reflectance calculation for each 

measurement. Images were captured and saved to the 

camera’s SD card and then transferred to the laptop 

computer. The region of interest (ROI) of each 

sample (30×30 pixels) was selected, and then the 

spectra (900 spectra of 900 pixels for each sample) 

were saved. The capturing was repeated for five 

samples from each origin/farm, and then the 

averaged spectra of the samples were recorded for 

further data analyses. Figure 2 shows the 

preprocessed (using SG filter) and averaged spectral 

reflectance curves of the N. crispa samples, 

respectively. 

 

 
Fig. 2. (a) Preprocessed spectra of the N. crispa samples from each origin/farm (S1-S5, blue, red, black, cyan, and green, 

respectively); and (b) averaged spectrum of the samples. 

 

 

The spectral curves of the N. crispa samples were 
better distinguished by wavelengths in the spectral 

band of 550-650 and 750-900 nm, although overlaps 

still exist. The wavelengths related to N-H, C-H, and 

O-H chemicals and associated with the oil contents 

in the food products are in the range of 800-900 nm 

(Kamruzzaman et al., 2016). The wavelengths in the 

spectral band of 920-980 nm are related to O-H due 

to the moisture content in the samples (Wu et al., 

2012). To reduce the spectra dimensions, PCA was 

applied to project the data onto a three-dimensional 

PC space (PC1, PC2, and PC3). It helps to make 
more effective and high-dimensional addressable 

data and to reduce the number of input data points 

for further analysis. Next, two bio-inspired 

unsupervised algorithms were created to cluster the 

N. crispa samples’ spectral fingerprints. Crisp 

clustering was applied using the SOM neural 

network and automatic clustering was performed 
using the ABC algorithm. 

 

Crisp clustering using SOM 
The SOM is a machine-learning algorithm that 

groups data according to their similarity. It was 

introduced by Teuvo Kohonen in the early 80s 

(Kohonen, T. 1982a). To reveal the input data 

distribution, it uses a set of finite models that are 

routinely related to the nodes of a regular grid so that 
more similar models connect to its neighborhood 

nodes and less similar ones keep farther apart in the 

grid. This strategy presents an intelligence into the 

topographic relationships of high-dimensional data 

items. The created grid using the SOM can be 

calibrated as an adjustable net according to the 

information that belongs to certain predetermined 

classes. It is used as an appropriate projection model 

for illustrating the inherent grouping structure of 
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unknown input data (Kohonen, 2013). It has also 

been extensively applied for data exploration in 

different fields of research such as physical sciences, 

industries, and finance (Cottrell et al., 2018). Many 

popular performance evaluation methods have been 

suggested to evaluate clustering models, but many of 

them do not work well in complicated conditions 

when clusters are presented with different densities. 

Chou et al. (2004) proposed a new index, the CS 

index, which is a criterion of within-cluster similarity 
to between-cluster dissimilarity according to 

Equation 1. 

 

𝑆 =
∑ (

1

𝑛𝑖
∑ max

𝑋𝑢∈𝐶𝑖
{‖𝑋𝑖−𝑋𝑢‖})𝑋𝑖∈𝐶𝑖

𝑘
𝑖=1

∑ ( min
𝑗∈𝑘,𝑗≠𝑖

{‖𝑚𝑖−𝑚𝑗‖})
𝑘
𝑖=1

                                                                                              

(1) 

 

In which k and n are the number of clusters and 

number of samples in a cluster, respectively, m 

indicates the cluster centroid, and Xi is the pattern in 

cluster Ci. A smaller CS index value in a clustering 
structure would be an appropriate grouping. 

 

Automatic clustering using ABC 
In crisp clustering, a challenging problem is to set up 

the number of clusters. This is well-known as the 

clustering problem and is more critical when the 

input data has many dimensions of variation, 

especially when overlapping exists among clusters, 

and when clusters differ significantly in shape, size, 
and density. Unsupervised automatic clustering was 

introduced to overcome this inconvenience (Jose 

Garcia and Gomez-Flores, 2016; Rahimzadeh et al., 

2022). Since prior domain knowledge of the data is 

not provided, automatic clustering is used to assign 

an ideal number of clusters in the datasets. In this 

study to do the automatic clustering of the N. crispa 

samples spectra, a coding plan was designed to 

change the number of clusters within the range of 

[Kmin, Kmax]. It plays a pertinent role in the efficacy 

of any meta-heuristic and organizes an indispensable 

step in its design. The encoding scheme was 
performed from the lowest (2) to the highest 

probable clusters (10), Kmin= 2 to Kmax= 10. Each 

solution shows that the center of the cluster was 

encoded into a Kmax × (T+1) vector within the range 

of [0, 1].  T is the three-dimensional PC space. The 

activation thresholds are determined by the inputs of 

the (T+1)-th column in each solution vector (Talbi, 

2016). They are used to specify which clusters are 

engaged in the clustering process. The encoding 

efficiency depends on the utilized search operators 

such as neighborhood, mutation, and recombination.  
The ABC algorithm, recently introduced as a swarm-

based algorithm, imitates the intelligent foraging 

behavior of a honeybee swarm (Karaboga and 

Basturk, 2009). It was used to optimize the automatic 

clustering of the N. crispa spectra. In this method, the 

environment of a hive is simulated as the search 

space. The ABC algorithm starts with bees that 

randomly select several food sources (solution vector 

(x)) and evaluate their nectar amount (fitness of the 

solution vector) for the clustering scheme (Davies 

and Bouldin, 1979). The Davies-Bouldin (DB) index 

is used to calculate the fitness of the solution vector. 

This index indicates the within-cluster variance ratio 

to between-cluster distance. The xij represented food 

sources where i={1, .…, number of the initial 
sources} and j={1, …., number of the parameters to 

be optimized}. Then the previously discovered areas 

(xij) are operated by the bees to make new food 

sources (vij). The process is done according to 

Equation 2. 

 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 +∅𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑏𝑗)                                                                                                       

(2)  

 
In which b and j are randomly chosen index and 

variable, respectively, and ϕij is a real random digit 

within the range [-1,1]. According to this equation, 

the information from the vij sources is more 

beneficial than the previously discovered sources 

shared by the bees to the onlooker bees. The newly 

trained bees utilize the information and try to find a 

new beneficial food source. In each turn, the sources 

that did not have enough potential to be better are 

supposed to be desolated sources and their relevant 

bees become scouts to look for new sources in the 

area. The initial clusters go through the successive 
processes of the onlooker and scout bees for a 

predefined set of turns. Eventually, the optimum 

clustering structure is introduced by the best source. 

The performance of the ABC algorithm is better than 

or similar in comparison with other meta-heuristic 

algorithms such as the genetic algorithm, particle 

swarm optimization algorithm, differential evolution 

algorithm, and evolution strategies. It has the 

advantages of employing fewer control parameters, 

high flexibility, robustness against the initialization 

step, and fast convergence speed (Akay and 
Karaboga, 2012). More detailed discussions of the 

performance of the ABC algorithm in comparison 

with other population-based algorithms in different 

optimization problems are reported by Karaboga and 

Akay (2009). 

The system developed in this study is a one-class 

modeling classifier. In machine learning, one-class 

classification (OCC), also known as unary 

classification or class modeling, aims to identify 

objects of a specific class among all objects by 

primarily learning from a training set that contains 

only the objects of that class. This approach differs 
from the traditional classification problem, which 

seeks to distinguish between two or more classes 

using a training set that includes objects from all the 

classes. One-class classification is generally more 

challenging. 
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Results 
Original grouping using PCA 
The PCA scores plot was utilized for the original 

clustering of the N.Crispe spectra (Fig 3a). It 

normally happens according to the sample spectral 

properties as a map of PC1 plotted against PC2. The 

relative importance of each PC is expressed in terms 

of how much variance of the original data is 

described. It is also observed how the 5 N. crispa 

samples (S1-S5) are distributed along the PC1 (94%) 

axis. Adjacent samples with close scores along a PC 

have almost equal values for the corresponding 

variables and are similar. On the contrary, samples 

for which the value of their score varies significantly 

(S4 and S3) are exactly different from each other. 

Sample 4 is distinguished, whereas the others are 

overlapped, and the problem was that sample 5 was 

not distinguished from S1-S3 (natural samples). 

Figure 3b shows the PCA loading plot, which is 

commonly used in spectral data interpretation and 

describes the relationships between variables. It also 
indicates the actual dimensions of the data 

transformed by PCA. 

  

   
Fig. 3. (a) PCA scores plot of N. crispa samples (400-1000 nm) and; (b) PCA loading plot of the whole variables 

(wavelengths). 
 

Variables that lie close together are highly 

correlated, and for each PC, variables with high 

loadings (i.e., close to +1 or –1), are more effective 

in the sample distinguishing. This interpretation is a 

a) 

b) 
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key direction and will help to decide how many data 

dimensions will be taken and excluded (dimension 

reduction or noise cancellation) for further analysis. 

The PCA automatically excluded 55 spectra (bands 

of 400-457, 670-721, 952-1000 nm) and reduced the 

204 spectra to 149 spectra. The remainder of the 

spectra, including 800-900 nm, are associated with 

the oil content in N. crispa. This issue was already 

proven by Kamruzzaman et al. (2016). 

  

Crisp clustering by SOM 
Since the SOM algorithm needs a pre-set number of 

clusters, it (the input neurons) was set equal to the 

number of the N. crispa samples. Therefore, a linear 

grid, 5×1, was defined for each node to be correlated 

to each cluster center. During the calibration of 

SOM, the spectral characteristics of the samples 

were correlated to the linear grid and then the 

undefined distance matrix (U-matrix) between the 

adjacent neurons was created. The clustering results 

and U-matrix of N. crispa samples are shown in 

Figure 4. By comparing this result against the 

original grouping by the PCA (Fig. 3a), it indicated 

that the samples were separated in their original 
groups, two clusters, natural and on-farm cultivated 

samples, but there were intra-group confusions 

between the clusters S5 & S4 and S1, S2, & S3. 

  

 

 

 
U-Matrix 

 
Fig. 4. (a) Crisp clustering structure of the natural and on-farm cultivated samples using the SOM algorithm and; (b) U-

matrix showing the distance between the samples, darker colors represent greater distances, while lighter colors represent 
shorter distances. 

 

U-Matrices with color scales or indicative coloring 

are used to compare the distance between the 

neighboring cluster centers. Dark coloring between 

the samples means the samples become farther, and 

on the contrary, light coloring between the samples 

means a proportionally short distance between them. 

For the N. crispa samples, the darker color occurred 

between samples S1, S2, & S3 and S4 & S5, 
indicating the longest distance between them. Red 

and orange colors relatively show a shorter distance 

between S1 & S2 and S4 & S5, respectively. The 

brightest color was between clusters S2 & S3, 

indicating the shorter distance between them. By 

comparing and relating the N. crispa samples spectra 

and their total volatile oils content (Table 1) to the 

coloring patterns, it can be concluded that because 

the natural samples have a higher percentage of 

VOCs and surly different spectra, their cluster gets a 

further distance from the samples S4 and S5 which 

had a lower percentage of VOCs. The value of the 

CS index and its components (between-group 

separation and within-group scatter) for the N.Crisps 

samples is given in Table 2. In the report of this 

measure, the distance between the clusters in the 
N.Crisps samples was more than twice as big as the 

distance within the cluster scatters (Numerator). As 

was already stated in using the U-matrices, the 

discrepancy between the two main clusters was due 

to the drastic variation in their spectral 

characteristics, which can be interpreted as the result 

of the big difference in their VOCs.  

 

Natural Samples 

On-farm Cultivated 

Samples 

a) b) 



Kiania1 et al.,                                                      Int. J. Hort. Sci. Technol. 2026 13 (2): 383-394 

 

390 

Table 2. Values of the CS index obtained in the clustering of N. crispa using Crisp Clustering. 

Parameter  Value 

CS index                       0.4896 

Within cluster scatter (Numerator) 1.9776 

Between cluster separation (Denominator) 4.0394 

 

Since the CS index is a cluster validation method for 
unsupervised algorithms, it was used as a validation 

method to assess how well the classes are separated 

from one another. The information provided in the 

text expresses the separation of the groups from each 

other as well as the compactness of the groups. 

 

Automatic clustering using ABC 
The real clustering of the samples’ spectra included 

two main clusters concerning their growing 
condition. Since the number of samples was not 

predefined in the automatic clustering, the ABC was 

created in several performances. Results of the 

clustering operation using the automatic clustering 

algorithm are depicted in Figure 5. As the algorithm 

began to cluster the samples into two groups (Fig. 

5a), the members of the closest clusters (S1-S3 and 

S4 & S5) were considered integrated clusters, and the 
value of the DB index was calculated at 0.35961. The 

lower the DB value, the more appropriate clustering 

would be. These two main clusters had the longest 

distance, and the minimum DB index value was also 

obtained. Therefore, the automatic clustering using 

ABC could detect these two main groups, which was 

the main goal of this study. When the samples were 

clustered into 3 clusters, the members of S1 & S2, 

S3, and S4 & S5 were grouped in 3 clusters 

separately (Fig. 5b). For this structure, the S1 & S2 

and S4 & S5 shared their members to form individual 

clusters and made single clusters, respectively. When 
the samples were clustered into 4 clusters, S1 & S2, 

S3, S4, and S5 were grouped into four clusters (Fig. 

5c). In this structure, S1 & S2 shared their members. 

Moreover, when the 5-cluster was set, the algorithm 

clustered all the samples in 5 groups (Fig. 5d).  

Fig. 5. Automatic clustering of N. crispa samples into (a) two clusters, in which the natural samples were segregated from the 
on-farm cultivated samples; (b) three clusters; (c) four clusters; and (d) five clusters. 
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Discussion 
A lower DB index value signifies superior clustering 

quality, as it indicates clusters that are compact and 

well-separated from one another. The DB index is 

calculated by taking the average 'worst-case' score 
for each cluster, where the score for a cluster is the 

maximum ratio of within-cluster scatter to between-

cluster separation for that cluster and any other 

cluster. All in all, when automatic clustering was 

applied, the number of gained clusters was similar to 

the original grouping but more separable. This is 

specific because this approach plays smartly and 

attempts to combine the samples with similar 

spectra. It was also found that the automatic 

clustering could intelligently recognize the N. crispa 

samples that do not have enough differences as 
individual clusters. It is crisp in setting apart the 

samples into groups but flexible in the number of 

clusters. Automatic clustering attempts to make a 

structure that includes several clusters with the most 

similarity of the data within the clusters. It tries to 

reach the criteria of intra-cluster similarity to 

between-cluster separability. In cases where the pre-

set number of clusters varies from the original 

clusters of the input data structure, the automatic 

clustering by ABC algorithm eliminates the 

limitation of the pre-set number of clusters with high 

probability and is capable of making a structure with 
the clusters according to the spectra changes of the 

samples from different geographical origins. 

In previous research regarding the application of the 

HSI coupled with unsupervised machine learning 

algorithms, Mayatopani et al. (2023) developed an 

HSI+SOM system to classify weed leaves with 

different medicinal properties. They found an 

accuracy of 89.44% in grouping their samples. Izadi 

and kiani (2024) utilized an HIS + automatic 

clustering algorithm by the ABC to differentiate 

various types of pomegranate molasses samples and 
evaluate the possibility of date syrup adulteration 

detection in the samples. The physicochemical 

properties of the samples (brix index, sucrose, 

acidity, ash content, pH, and formalin index) were 

measured as the reference data. They illustrated that 

the developed system could detect date syrup 

nonauthenticity in pomegranate molasses samples 

from the level of 5% adulteration.  

 

Conclusions 
A portable HSI was coupled with two biologically 

inspired algorithms, SOM and automatic clustering 

by ABC, for unsupervised authenticity analysis of N. 

crispa samples. In real applications, the system 

usually faces a variety of unknown samples from 

different geographical origins, which are challenging 

conditions for the developed supervised algorithm. 

In performing the SOM clustering, it was generally 
found that the two main groups, naturally grown and 

on-farm cultivated samples, were distinguished into 

their pertinent groups. The U-matrix was used to 

describe the amount of spectral change in the N. 

crispa samples. The spectra of the naturally grown 

and on-farm cultivated samples were distinguished 

by a significant distance. It indicated the variation of 

their VOCs in their growing conditions. In some 

cases, the clusters overlapped with each other, 

indicating the similarity of their spectral fingerprints. 

However, the automatic clustering by the ABC 
algorithm did not need a predefined number of 

clusters but successfully detected the spectral 

fingerprints of the naturally grown (S1-S3) and on-

farm cultivated samples (S4 & S5) from each other 

as well as their samples in each original group. The 

automatic clustering by the ABC presented a smarter 

performance to distinguish real intrinsic clusters with 

the most within-group similarity, in comparison with 

crisp clustering using SOM. The overall results 

demonstrated the great potential of the HSI system 

coupled with biologically inspired unsupervised 
automatic algorithms as a reliable screening tool for 

rapid, nondestructive, and real-time authenticity 

evaluation of N. crispa samples in the markets. The 

proposed HSI system could also be calibrated and 

used for monitoring and authenticity evaluation of 

other types of medicinal and aromatic plant products. 
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