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 Plant diseases are increasingly becoming a significant constraint on 
crop production, with their incidence rising each year worldwide. 
Consequently, managing crop diseases has grown more challenging. In 
response, the use of fungicides has escalated in recent years. 
Forecasting has emerged as an essential preventive tool for managing 
epidemic diseases. By employing forecasting techniques, fungicides can 
be applied precisely and at optimal times, effectively limiting disease 
spread. Climate change is a major contributor to these epidemics, as 
temperature fluctuations can exacerbate the spread of pests and 
diseases. This has resulted in severe economic losses, including famine, 
and has weakened the economies of numerous nations. Most 
forecasting efforts have concentrated on airborne diseases, which pose 
a substantial threat to food security. Crop diseases can lead to 
significant yield losses, degrade produce quality, and, in severe cases, 
cause total crop failure. These effects directly impact the availability 
and affordability of food, posing challenges for both producers and 
consumers. To mitigate these challenges, plant disease forecasting 
plays a pivotal role in disease management. Its primary goal is to 
provide timely and accurate predictions of disease outbreaks, enabling 
farmers to take proactive measures to protect their crops and minimize 
losses. 
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Introduction
Plant pathogens responsible for major crop 
diseases significantly reduce yields, productivity, 
and food security, ultimately impacting a 
country’s GDP and the overall health of its 
agricultural systems. Early detection and 
effective treatment of these diseases are critical 
to minimizing losses and supporting sustainable 
agricultural practices (Ristaino et al., 2021). 
According to the Food and Agriculture 
Organization (FAO), plant diseases and pests 
account for 20–40% of global losses in 
agricultural productivity and food security. 
Prompt disease control is therefore essential to 
reducing these losses on a global scale (Pierce and 
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Nowak, 1999). Advancements in early warning 
systems and predictive analytics have 
revolutionized plant disease forecasting. Modern 
systems now integrate diverse data sources, 
including weather and environmental conditions, 
to deliver accurate and timely forecasts of 
potential disease outbreaks. These advancements 
have significantly enhanced disease control 
strategies, enabling farmers to make informed 
decisions and take preventive measures more 
effectively (Hasanaliyeva et al., 2022). 
This article explores the environmental data, 
forecasting models, and practical applications of 
plant disease forecasting systems. It also 
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examines the causes of epidemics and the use of 
prophylactic sprays for managing various 
diseases. The Plant Disease Forecasting System 
operates similarly to weather forecasting but is 
specifically designed to predict plant disease 
outbreaks. This innovative tool estimates the 
likelihood and location of disease occurrences, 
assisting farmers and growers in implementing 
preventative measures to minimize damage and 
protect crops. Plant diseases pose a substantial 
threat to agricultural productivity, often resulting 
in reduced yields, financial losses, and 
compromised food security. Effective disease 
management is therefore essential to maintaining 
healthy crops and ensuring sustainable food 
production. By adopting preventive strategies, 
farmers can better safeguard their crops against 
the adverse effects of plant diseases 
(Chattopadhyay et al., 2011). 
 
Plant disease forecasting is a critical management 
tool designed to predict the emergence and 
severity of plant diseases. By leveraging historical 
and anticipated weather data specific to a region, 
these systems provide farmers with early 
warnings, enabling timely adjustments to crop 
protection strategies (Bhupathi and Sevugan, 
2021). Accurate and timely predictions can 
significantly reduce financial costs, minimize 
productivity losses, and mitigate environmental 
impacts. Although severe infections are rare, 
favorable climatic conditions can trigger 
devastating crop losses. Forecasting systems play 
a vital role in anticipating and managing such 
outbreaks (Rehman et al., 2016). 
Plant disease forecasting is a component of 
applied epidemiology, used to detect early signs 
of disease in specific areas. It provides data to 
implement timely remedial measures and 
prevent losses. Forecasting considers various 
predictive factors, including weather conditions, 
relative humidity, leaf wetness, dew, weather 
during the intercrop period and crop season, 
disease presence in young crops, and inoculum 
levels in the air, soil, or planting material (Shakya 
et al., 2015). This strategy is especially important 
in controlling plant diseases when genetic 
resistance is unavailable. Forecasting systems 
reduce economic losses, prevent epidemics, and 
support effective prophylactic measures by using 
weather data to identify disease risks and 
implement early control steps. This proactive 
approach enhances disease management, 
promotes crop health and yield, and encourages 
environmentally responsible agricultural 
practices (Juroszek and Von Tiedemann, 2011). 
Short-range forecasting allows for the 
anticipation of devastating diseases, helping 

farmers avoid costly plant protection operations. 
Prophylactic spraying, for instance, can 
effectively reduce seed-borne diseases like 
sorghum smut. Advanced long-term forecasting 
enables farmers to select resistant crop varieties 
over susceptible ones (Kim et al., 2017). Plant 
diseases are significant contributors to famines 
and epidemics. While many fungicides have been 
developed, some diseases remain challenging to 
manage. These challenges are exacerbated by the 
evolution of virulent pathogen strains and 
fungicide resistance, which can lead to recurring 
infections even after chemical treatments (Luck 
et al., 2011). Diseases also reoccur in various 
genotypic forms, and pathogen aggressiveness 
combined with ineffective control measures 
results in substantial yield losses. 
Effective management strategies include 
forecasting, cultural practices, biological control, 
varietal resistance, and chemical methods. 
Among these, forecasting stands out as the most 
effective approach for managing plant diseases. It 
provides immediate and accurate insights into 
disease risks and favorable conditions, enabling 
farmers to take proactive measures to protect 
their crops (Richard et al., 2022). The primary 
sources of plant disease infections include soil, 
seeds, and infected plant debris. Consequently, 
cultural practices such as flooding, fallowing, and 
crop rotation are effective strategies for 
managing soil-borne diseases like fusarium wilt 
and root rot, as they reduce the inoculum load in 
the soil. Among the various management 
approaches, host resistance remains the most 
effective. Although a range of fungicides—
contact, systemic, and translaminar—has been 
tested on plants, pathogens continue to 
demonstrate remarkable adaptability to changes 
in both host genotypes and fungicide 
formulations (Hwang et al., 2008). In contrast, 
biological management is gaining importance due 
to its environmentally friendly nature. 
Forecasting plays a pivotal role in preventing or 
mitigating epidemics, with numerous disease 
forecasting models developed worldwide to 
protect crops (Lahlali et al., 2022). These systems 
aim to control diseases by predicting their 
intensity or likelihood of outbreak (Agrios, 2005). 
A key objective of forecasting systems is to 
minimize the reliance on chemical interventions 
by providing timely and accurate predictions that 
allow proactive measures to be taken in an 
environmentally safe manner. Various modeling 
techniques are utilized to predict plant diseases 
(Taylor et al., 2003). Many forecasting models 
incorporate image processing and meteorological 
data, with a significant focus on potato late blight 
disease. These models analyze data from crops, 
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pathogens, and weather—or a combination of the 
three—to predict disease emergence and changes 
in severity. 
At the core of plant disease forecasting lies the 
“disease triangle,” which illustrates the 
interaction between the environment, host, and 
pathogen. Understanding these factors is 
essential for accurately and efficiently predicting 
disease outbreaks (Francl, 2001). Forecasting 
systems consider a range of variables, including 
weather patterns, crop health, and environmental 
conditions, to assess the likelihood and potential 
severity of disease epidemics. By analyzing these 
indicators, scientists can provide precise 
predictions about disease risks, enabling farmers 
to take timely preventive measures. Armed with 
this information, farmers can stay ahead of 
potential outbreaks, protecting their crops and 
reducing losses (Grünwald et al., 2000). 
 

Plant disease forecasting system: early 
detection, data collection, and analysis 
techniques for disease prediction 
Early detection and predictive analysis empower 
farmers to implement preventive measures in 
advance, reducing reliance on reactive solutions 
and increasing the likelihood of successful crop 
protection. By forecasting disease onset, farmers 
can take timely actions such as applying 
fungicides or adjusting irrigation practices to 
mitigate potential crop damage. Integrating 
predictive analysis with sustainable farming 
techniques enables disease management while 
preserving soil health and biodiversity (Javaid et 
al., 2022). 
Effective disease forecasting begins with 
comprehensive data collection, which includes 
monitoring weather patterns, crop health, and 
disease prevalence. Data acquisition methods 
range from on-site field observations to advanced 
technologies like automated sensors and satellite 
imaging, ensuring accuracy and thoroughness 
(Javaid et al., 2022). At the core of any plant 
disease forecasting system lies an extensive 
disease database. This database stores critical 
information on disease patterns, symptoms, and 
potential epidemics. When integrated with 
management systems, it provides farmers with 
timely, actionable insights for disease prevention 
and control (Popkova et al., 2022). Technologies 
such as drones and remote sensors play a pivotal 
role in disease surveillance. These tools collect 
real-time data on crop health and disease 
prevalence, offering farmers immediate updates 
and practical recommendations for disease 
management. Such innovations help prevent 

severe yield losses and enhance decision-making 
(Raj et al., 2021). 
The interpretation of collected data relies on 
advanced modeling and analytical methods. 
These approaches use numerical analysis and 
scientific algorithms to identify patterns, 
correlations, and risk factors associated with 
disease outbreaks. This analysis enables farmers 
to make data-driven decisions and implement 
targeted interventions (Buja et al., 2021). 
Weather is a critical factor in disease 
development. Monitoring weather data—such as 
temperature, humidity, and rainfall—facilitates 
the creation of predictive models that assess the 
likelihood of disease outbreaks under favorable 
conditions (Sparks et al., 2014). 
In addition to weather data, monitoring crop 
health and phenotypic characteristics provides 
valuable insights into disease susceptibility. 
Observing indicators such as leaf color, growth 
patterns, and stress levels enables early detection 
of disease, allowing farmers to take timely 
preventive measures (Zheng et al., 2023). Remote 
sensing and satellite imaging have revolutionized 
agricultural monitoring, enabling farmers to 
oversee vast areas from above. These 
technologies capture images at multiple 
wavelengths, detecting subtle changes in crop 
health and identifying potential disease hotspots 
with precision (Mandal et al., 2022). 
Machine learning and artificial intelligence (AI) 
have elevated data analysis to unprecedented 
levels. By training algorithms on large datasets of 
historical information, these technologies can 
identify patterns and generate accurate forecasts 
of disease outbreaks. Such forecasting models 
empower farmers to implement timely 
interventions and protect their crops from 
various diseases (Chemura et al., 2017). Weather 
plays a crucial role in the development and 
spread of plant diseases. Specific weather 
patterns create favorable conditions for certain 
diseases, such as fungal infections that thrive in 
cold, moist environments or hot, humid climates. 
By analyzing the relationship between weather 
conditions and disease dynamics, plant disease 
forecasting systems provide farmers with 
essential insights to take proactive measures 
(Mandal et al., 2022). 
In addition to weather, other environmental 
factors significantly influence disease 
transmission. Soil moisture, air humidity, and the 
presence of pathogens in the surrounding 
environment contribute to the spread of plant 
diseases. Agricultural practices like crop rotation 
and ensuring proper air circulation can mitigate 
these risks. Incorporating such environmental 
factors into forecasting models enhances their 
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accuracy and applicability, helping farmers better 
predict and manage outbreaks (Raji et al., 2015). 
Climate data and models are vital components of 
precise plant disease forecasting systems. Using a 
combination of climate models, satellite imagery, 
and historical weather data, scientists can 
identify patterns and trends in disease 
emergence. This analysis enables the creation of 
predictive models that estimate outbreaks based 
on current and future weather conditions. These 
tools provide farmers with actionable insights, 
allowing them to make informed decisions for 
effective disease management (Coakley, 1988). 
 

Information needed for disease forecasting 
A solid understanding of epidemiology is 
essential for precise plant disease forecasting. 
Accurate predictions require detailed knowledge 
of several factors, including the prevalence of 
susceptible cultivars in the region, the host's 
response to pathogen activity at different growth 
stages, and the distribution and abundance of the 
host in specific locations. Additional critical 

elements include the quantity of primary (initial) 
inoculum present in the soil, air, or planting 
material, as well as the spread of inoculum, 
infection processes, spore germination rates, 
incubation periods, and sporulation on infected 
hosts. The re-dispersal or dissemination of 
spores, inoculum potential, density, and survival 
stages in seeds, soil, and air are also vital 
considerations (Francl, 2001). Environmental 
factors such as temperature, humidity, light 
intensity, and wind velocity significantly 
influence disease development. These variables 
interact within the framework of the "disease 
triangle," which represents the relationship 
between the host, pathogen, and environmental 
conditions. By studying this interaction, 
forecasting models can be developed to minimize 
yield losses caused by various diseases. For 
example, a forecasting model for potato late 
blight might incorporate favorable conditions 
such as specific temperature ranges and wind 
speeds to predict disease outbreaks and guide 
preventive measures (Fig. 1). 

 
 

 

Fig. 1. A forecasting model for late blight of potato based on specific temperature, relative humidity, and leaf wetness 
suitable for disease development. 

 

Forecasting models for different plant 
diseases 
Forecasting models have been developed for a 
wide range of plant diseases, with significant 
emphasis on managing and preventing the spread 
of early and late blight in potatoes. Over the years, 
numerous models have been created to address 

key diseases, as summarized in Table 1. Among 
these is the computer simulation program 
EPIDEM, introduced in 1969. EPIDEM simulates 
each stage of a pathogen’s life cycle in relation to 
environmental conditions. Its primary goal is to 
prevent early blight epidemics in potatoes and 
tomatoes caused by Alternaria solani. 
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Table 1.  Information on forecasting and simulation models developed for major plant diseases, including late blight 
of potato, early blight of tomato and potato, fire blight of apple, and rice blast, highlights the contributions of various 

scientists in creating tools for effective disease prediction and management.

 

 

S. No Forecasting models Used against Reference 

1.  BLITECAST 

 

Late blight of potato (Phytophthora infestans) 

 

Krause et al. (1975) 

2.  EPIPHTORA Gurevich (1979) 

3.  SIMPHYT Stephan and Gutsche (1980) 

4.  Phytoprog Gujer (1991) 

5.  WISDOM Stevenson (1993) 

6.  PhytoPRE Forrer et al. (1993) 

7.  PHYTEB Gutsche (1993). 

8.  JHULSACAST Singh et al. (2000) 

9.  SIMCAST Grunwald et al. (2002) 

10.  EGY-BLIGHTCAST Afifi et al. (2009) 

11.  BLIGHT Pro Small et al. (2015) 

12.  INDO-BLIGHTCAST Singh et al. (2016) 

13.  BLIGHTSIM Narouei-Khandan et al. (2020) 

14.  EPIDEM Early blight (Alternaria solani) on tomato and potato Waggoner and Horsfall (1969) 

15.  FAST Early blight (Alternaria solani) on tomato Madden et al. (1978) 

16.  PLANT-Plus Early blight (Alternaria solani) in potato Raatjes et al. (2004) 

17.  TOMCAST Alternaria, (Septoria, anthracnose) in tomato Cowgill et al. (2005) 

18.  EPIMAY 
Southern corn (Bipolaris maydis) leaf blight 

Stirm et al. (1971) 

19.  EPICORN Massie (1973) 

20.  EPIPRE Yellow rust (Puccinia striformis) in winter wheat Reinink (1986) 

21.  BARSIM-I Leaf rust (Puccinia triticina) of Barley Teng (1980) 

22.  EPIGRAM 
Powdery mildew (Blumeria graminis f.sp. hordei) of 

barley 
Aust et al. (1983) 

23.  PLAM Leaf spot (Cercosporidium personatum) of Groundnut Olatinwo et al. (2012) 

24.  CERCOS Cercospora blight of celery Berger (1973) 

25.  MYCOS Mycosphaerella blight of chrysanthemum McCoy (1976) 

26.  MARYBLYT Fire blight (Erwinia amylovora) on apples and pear Lightner and Steiner (1992) 

27.  EPIVEN 
Apple scab (Venturia inaequalis) on apples 

Kranz (1979) 

28.  A- Scab Rossi et al. (2007) 

29.  MELCAST 
Watermelons (Anthracnose, gummy stem blight), 

Muskmelons (Alternaria) 
Keinath et al. (2007) 

30.  BLASTCAST 

Rice blast (Pyricularia oryzae) 

Ohta et al. (1982) 

31.  BLASTAM Hayashi (1988) 

32.  BLASTL Ishiguro and Hashimoto (1991) 

33.  BLASTSIM. 2-a Rice blast (Pyricularia oryzae) for tropical rice Calvero and Teng (1991) 

34.  EPIBLAST 
Rice blast (Pyricularia oryzae) 

Kim and Kim (1993) 

35.  BLASTMUL Ashizawa et al. (2005) 
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Late blight of potato 
Potatoes (Solanum tuberosum L.) are globally 
recognized as the most important tuber crop. 
However, their production is severely threatened 
by Phytophthora infestans, an oomycete 
pathogen that causes significant damage to 
potato plants. This fungus can lead to severe 
infections, resulting in foliage loss and tuber 
rotting, which cause substantial yield losses. The 
devastating impact of Phytophthora infestans 
was tragically illustrated during the Irish famine 
of 1845, when an outbreak of late blight triggered 
a catastrophic epidemic, leading to widespread 
food shortages and loss of life. 
To combat this persistent threat, researchers 
have developed various forecasting models 
aimed at predicting and preventing similar 
epidemic diseases in potato crops. These models 
consider environmental factors such as nighttime 
temperature, humidity, leaf wetness, and dew to 
provide early warnings and guidance for farmers. 
Disease outbreaks are most likely to occur in 
environments with temperatures ranging from 
10 to 22°C, humidity levels above 75%, and 
gloomy or foggy weather conditions. The late 
blight pathogen is closely associated with these 
conditions and is influenced by factors such as 
relative humidity, light intensity, fog, rainfall, 
dew, and wind speed (Bhattacharyya et al., 1983). 
It is estimated that seven to fourteen d of 
favorable conditions typically precede the onset 
of potato late blight, characterized by a five-d 
average temperature of 25.5°C and cumulative 
rainfall exceeding 3.0 cm over the preceding ten 
d. 
Farmers can now leverage advanced 
computerized models, such as Phytoprog, Indo-
BlightCast, and LightCAST, to receive early 
warnings of late blight outbreaks across different 
regions. For example, Syngenta operates the 
Blightcast system in the UK, while the Indian 
Meteorological Department collaborates with the 
Central Potato Research Institute (CPRI) in 
Shimla and the All India Coordinated Research 
Project (AICRP) in New Delhi to develop the Indo-
BlightCast model. In West Germany, forecasting 
relies on the Phytoprog model (Singh et al., 2016). 
A noteworthy advancement is the INDO-
BLIGHTCAST late blight forecasting model, 
developed by CPRI in Shimla, India. This model 
uses meteorological data and historical records of 
late blight outbreaks across four distinct regions 
in the Indo-Gangetic plains to predict disease 
occurrence accurately. It calculates the mean 
overnight relative humidity (RH) and 
physiological d (P-d) accrued over a seven-d 
period. Late blight is forecasted to appear within 

15 d if the cumulative effective temperature (P-d) 
and RH exceed 52.5 and 525, respectively, for 
seven consecutive d (Singh et al., 2016). 
In Egypt, Afifi et al. (2009) developed EGY-
BLIGHTCAST, the first computer model tailored 
to address late blight disease in the country’s 
potato-growing regions. These regions are 
particularly susceptible to P. infestans due to 
their cool and humid climates. EGY-BLIGHTCAST 
relies on data from automated agro-weather 
stations to evaluate the daily infection potential of 
late blight, analyzing the 24-h microclimate. The 
model integrates and refines prediction 
techniques based on observations from multiple 
growing seasons, providing a more accurate and 
cost-effective solution for managing the disease. 
This targeted approach reduces the need for 
fungicide applications compared to traditional 
spray schedules, minimizing environmental and 
health impacts while maintaining effective 
disease control. 
Similarly, earlier advancements in predictive 
modeling include BLITECAST, an automated 
forecasting algorithm developed by Krause et al. 
(1975) and Krause and Massie (1975) at 
Pennsylvania State University. This model 
combined Wallin’s (1962) severity ratings and 
Hyre’s (1947) concept of blight-favorable d, 
enabling growers to receive tailored advice based 
on meteorological data from their fields. By 
integrating these forecasting techniques, 
BLITECAST has significantly advanced the field of 
plant pathology, offering growers actionable 
recommendations to manage late blight 
effectively. 
PHYTEB is a forecasting model for Phytophthora 
infestans that predicts the symptomatic stages of 
hosts, including the latent period, pre-infection 
stage, number of infections, and the amount of 
dead tissue. This model comprises two sub-
models, SIMPHYT-1 and SIMPHYT-2. SIMPHYT-1 
is capable of predicting the start of an outbreak 
seven to ten d in advance. Conversely, SIMPHYT-
2 accelerates the spread of the epidemic by 
incorporating two cultivar classes and various 
fungicide application techniques. According to 
Gutsche (1993), PHYTEB is a valuable tool for 
anticipating and managing outbreaks of P. 
infestans in crops. 
The late blight forecasting model, known as 
SIMPHYT, is a sophisticated tool designed to 
predict the first appearance date of P. infestans. 
SIMPHYT-1 utilizes a risk rating and crop 
emergence date to provide these forecasts. 
Additionally, SIMPHYT-2 is an intricate expert 
system that predicts P. infestans epidemics on a 
plot-specific basis. This system offers 
recommendations based on various factors, 
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including weather conditions, crop data, and 
fungicide properties. Another component of the 
system, SIMPHYT-3, functions as an infection 
pressure model and determines the optimal 
interval for fungicide spraying in a given area. 
These models have undergone years of validation, 
demonstrating their effectiveness in reducing 
fungicide loads on potato crops. As a result of 
their success, the SIMPHYT models have been 
integrated into warning systems across Germany, 
Austria, and Luxembourg (Erich et al., 2003). 
A comprehensive review of 15 years of weather 
data (1997–2012) was conducted in the province. 
Arora et al. (2012) developed JHULSACAST, a 
model to predict late blight in western Uttar 
Pradesh, providing valuable insights for 
anticipating late blight development in Punjab. 
The model indicated that if specific temperature 
and relative humidity conditions persisted for a 
given duration, late blight would manifest ten d 
later. The updated model demonstrated a high 
level of accuracy in predicting the onset of late 
blight under Punjabi conditions. 
Forrer et al. (1993) developed PhytoPRE, a 
sophisticated computer-based information and 
decision support system to manage potato late 
blight in Switzerland. PhytoPRE includes an 
epidemiological forecast model, a set of decision 
rules, and an information system. PHYTEB, a 
component of this system, accurately predicts the 
presence of P. infestans and effectively controls 
the symptomatic stages of hosts, including the 
latent period, pre-infection, number of infections, 
and the amount of dead tissue. PHYTEB consists 
of two sub-models, SIMPHYT-1 and SIMPHYT-2. 
SIMPHYT-1 predicts that the outbreak of potato 
late blight will occur seven to ten d earlier than 
previously anticipated. On the other hand, 
SIMPHYT-2, as described by Gutsche (1993), 
accelerates the spread of epidemics across two 
cultivar classes and integrates various fungicide 
application strategies. 
The Netherlands has also developed a tool called 
PROPHY to assist farmers in making informed 
decisions about their crops. PROPHY 
recommends applying a fungicide ten d after the 
potato crop reaches a height of 15 cm, particularly 
when cultivating more resistant varieties. To 
determine the timing of additional treatments, 
PROPHY considers both weather conditions and 
the level of fungicide protection already present 
in the crops. Ideal conditions for the growth of P. 
infestans, a harmful pathogen, include a d with at 
least six h of relative humidity and at least two h 
of rain or leaf wetness between 8:00 PM the 
previous d and 12:00 AM on the evaluation d. 
According to Schepers (1995), the temperature 

range required for optimal growth of P. infestans 
is between 8 and 25°C. 
Accurate data on temperature, relative humidity, 
soil moisture content, crop prevalence, and 
cultivar vulnerability are crucial for the effective 
operation of the SIMBLIGHT 1 model (Kleinhenz 
et al., 2007). This model calculates a cumulative 
risk score for different emergence date groups 
and alerts authorities when the score surpasses a 
predetermined threshold, signaling the onset of 
an epidemic. 
The BLIGHTSIM model, developed by Narouei-
Khandan et al. (2020), represents a 
groundbreaking advancement in predicting 
potato late blight. It simulates the response of 
Phytophthora infestans to variations in dtime 
temperature and humidity, particularly those 
associated with climate change. BLIGHTSIM uses 
relative humidity and hourly temperature as its 
primary input variables. The model was 
calibrated using growth chamber data that 
covered a complete infection cycle and was 
subsequently validated with field data from 
Ecuador. Across all datasets analyzed, 
BLIGHTSIM demonstrated a consistently strong 
fit, highlighting its reliability. 
Analysis of growth chamber data for a single 
infection cycle revealed that the area under the 
disease progress curve (AUDPC) is significantly 
influenced by both the average temperature and 
its amplitude. This finding underscores the 
importance of these variables in understanding 
disease dynamics. BLIGHTSIM’s integration into a 
potato growth model could enable researchers to 
explore the impact of daily temperature 
fluctuations on late blight development under 
various climate change scenarios, offering 
valuable insights for future disease management 
strategies. 

 
Early blight disease in potato 
Alternaria solani is the causative agent of early 
blight disease in potatoes, which leads to 
significant leaf loss. In 1969, Waggoner and 
Horsfall developed the EPIDEM model to predict 
the occurrence of early blight in potato crops. 
This forecasting model adjusts the progression of 
various fungal stages based on weather 
conditions, covering processes such as the 
formation of conidiophores and spores, spore 
dispersal by wind or rain, deposition, 
germination, penetration, incubation, and lesion 
growth. The model incorporates key 
meteorological variables, including temperature, 
relative humidity, wind speed, sunshine, and 
precipitation, evaluated on a three-hour basis. 
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The PLANT-Plus system provides a sophisticated 
forecasting strategy for managing fungicide 
applications based on disease risk, climatic 
variables, observed meteorological conditions, 
and plant growth factors. This decision support 
system (DSS), developed by Dacom Plant Service 
in Emmen, the Netherlands, enables fungicide 
treatments to be tailored to the level of disease 
risk. By leveraging weather forecasts and fungal 
life-cycle models to predict the onset of 
infections, PLANT-Plus aids in scheduling 
fungicide applications. This targeted approach 
reduces costs and minimizes the frequency of 
fungicide sprays while maintaining effective 
disease control (Raatjes et al., 2004). 

 
Early blight of tomato 
In 1978, Madden et al. introduced a forecasting 
system called FAST, designed to predict 
outbreaks of Alternaria solani in tomatoes. Over 
time, researchers have refined this system to 
include an automated forecasting technique for 
tracking A. solani severity during epidemics. 
FAST generates spray schedules for tomatoes, 
typically implemented two to four weeks after the 
onset of early blight. In addition to weekly spray 
schedules, the system offers a transplanting 
timetable, identifies optimal environmental 
conditions for tomato cultivation, and evaluates 
the effectiveness of spray schedules compared to 
a non-sprayed control. However, despite 
implementing effective fungicide applications, no 
significant changes in disease outcomes were 
observed. 
The FAST system relies on weekly calendars and 
timetables, integrating two empirical models: one 
based on apparent infection rates and the other 
on final disease severity. It incorporates daily 
environmental parameters such as hours of leaf 
wetness, maximum and minimum disease levels, 
and comparisons with non-sprayed controls. 
Analysis of factors like rainfall, temperature 
fluctuations during wet periods, and humidity 
levels exceeding 90% revealed that fewer 
fungicide treatments were needed under certain 
conditions. These insights contributed to 
developing weekly timetables that consistently 
provided effective disease control. 
 

Rice blast   
Rice blast, caused by Pyricularia grisea, is a major 
epidemic disease affecting all parts of the rice 
plant. A typical sign of infection is the appearance 
of small brown spots on the neck, node, and leaf, 
which leads to the production of chaffy grains 
during the reproductive phase, significantly 
reducing crop yield. Among the various 

forecasting models developed worldwide to 
monitor rice blast, the correlative information 
method is widely employed. This method predicts 
disease outbreaks based on temperature and 
relative humidity (RH). Severe infections are 
forecasted when the minimum temperature 
ranges between 20 and 26 °C and RH exceeds 
90% (Calvero et al., 1991). 
In 1991, Ishiguro and Hashimoto developed the 
BLASTL model in Japan to optimize the timing of 
fungicide applications, aiming to minimize leaf 
blast incidence. The BLASTAM system, which 
operates using real-time weather data provided 
by AMeDAS via telephone modem, evaluates 
whether conditions are favorable for leaf blast 
infections. BLASTAM enables users to predict the 
onset of a leaf blast epidemic and the rapid 
increase in lesion numbers. Key data inputs for 
these predictions include leaf wetness hours, the 
mean temperature during leaf wetness periods, 
and the average temperature over the previous 
five d. These parameters help forecast potential 
outbreaks and determine the optimal timing for 
fungicide applications. 
In Korea, Kim and Kim (1993) developed the 
EPIBLAST forecasting technique to address the 
challenge of predicting rice blast disease. This 
system provides quantitative predictions 
regarding the frequency of leaf blast outbreaks by 
integrating meteorological and plant 
physiological factors. Input variables include 
temperature, relative humidity, precipitation, 
dew period, and wind velocity, along with plant 
conditions such as the proportions of dead, 
diseased, and healthy leaves. EPIBLAST also 
accounts for critical epidemiological processes, 
including the incubation period, penetration, 
sporulation, conidia release and spread, and 
inoculum potential. By synthesizing these factors, 
EPIBLAST offers accurate predictions of leaf blast 
risk, guiding effective management strategies to 
protect rice crops and ensure optimal production. 

 
Early tikka leaf spot of groundnut 
Cercospora arachidicola is the pathogen 
responsible for groundnut early leaf spot, an 
airborne disease spread through wind-borne 
spores and conidia. Under favorable conditions, 
the disease can spread rapidly, reducing the 
plant’s photosynthetic activity and ultimately 
leading to significant yield losses. Effective 
management and control of early leaf spot 
require a thorough understanding of the critical 
climatic factors that facilitate the disease's 
development. To achieve this, a prediction and 
forecasting model utilizing the high-resolution 
Weather Research and Forecasting (WRF) model 
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has been proposed. This model relies on 
temperature and relative humidity data as its 
primary inputs. By integrating short-term 
weather parameter predictions, producers can 
make informed decisions, optimizing the timing 
and application of fungicides to minimize the 
disease's impact on crops. In addition to early leaf 
spot, groundnut resistance to late leaf spot 
disease is also influenced by temperature and the 
duration of leaf wetness (Rao et al., 2004). This 
further underscores the importance of 
incorporating weather forecasting into 
comprehensive disease management strategies 
for groundnuts. 

 
Fire blight on apples and pear 
The software application MARYBLYT is 
specifically designed to forecast key 
epidemiological events and evaluate the risk 
status of fire blight, aiding in the selection of 
appropriate chemical treatments. By 
incorporating multiple data inputs such as 
rainfall, minimum and maximum temperatures, 
and phenological factors, MARYBLYT provides 
accurate fire blight risk predictions. This 
integration of diverse data supports effective and 
timely disease management strategies (Lightner 
and Steiner, 1992). 

 
Yellow/stripe rust of wheat and barley 
The EPIPRE model, developed by Reinink et al. 
(1986), was designed to manage diseases and 
pests in wheat. From 1981 to 1984, 27 
experiments were conducted to evaluate and 
refine the EPIPRE system for pest and disease 
management. These studies led to adjustments in 
the system’s recommendations for controlling 
Septoria spp. Following these modifications, 
there was minimal difference in net yields and the 
type and number of pesticide applications 
compared to conventional guidance. The EPIPRE 
model demonstrated effectiveness in managing a 
range of pests and diseases, including powdery 
mildew, cereal aphids, stripe rust, and leaf rust. 
Additionally, its implementation resulted in a 
lower reduction in pesticide usage compared to 
previous years, highlighting its potential for more 
targeted and sustainable pest and disease 
management in wheat (Reinink et al., 1986). 

 
Cercospora blight of celery 
The CERCOS early forecasting system is designed 
to prevent the global spread of early blight in 

celery caused by Cercospora apii. Recent “low-
risk” fungicides, particularly strobilurins such as 
azoxystrobin and a combination of 
pyraclostrobin and boscalid, have demonstrated 

significant effectiveness in managing this disease. 
When used alongside forecasting models like the 
Berger model, these newer fungicides achieved 
an 81% reduction in the area under the early 
blight disease curve compared to the older 
fungicide chlorothalonil. This finding highlights 
the greater effectiveness of these modern 
fungicides in controlling early blight and reducing 
yield losses (Raid et al., 2008). 
 

Powdery mildew of wheat and barley 
The MEHLTAU forecasting model, developed by 
Friedrich and Boyle (1997), was designed to 
control powdery mildew in winter wheat caused 
by Erysiphe graminis. This model employs spore 
traps placed in the field to monitor the daily 
distribution of spores, focusing on the periodicity 
of spore dispersal, airborne conidial 
concentrations, and the washing-off of conidia. 
These factors are heavily influenced by the timing 
and amount of precipitation. By incorporating 
climatic data, the MEHLTAU model forecasts 
disease outbreaks before they escalate during the 
onset of spring epidemics. This early warning 
system enables the implementation of 
appropriate management strategies, including 
timely fungicide applications, to prevent further 
disease spread. As a result, the model helps 
maintain wheat health by preserving its 
photosynthetic capacity and overall vitality. 
However, the model’s accuracy relies on the 
proper functioning and placement of spore traps; 
malfunctioning equipment or incorrect 
placement can lead to inaccurate data collection 
and faulty forecasts. 

 
Septoria leaf spot of tomato  
The TOMCAST method, short for “Tomato Disease 
Forecasting System,” is a forecasting tool used to 
manage septoria leaf spot, a disease caused by 
Septoria lycopersici that significantly impacts 
tomatoes in Brazil. The system is designed to 
optimize fungicide application timing, aiming to 
control the disease more effectively while 
reducing reliance on routine chemical 
treatments. TOMCAST calculates disease severity 
values (DSVs) based on key environmental 
factors, including temperature and leaf wetness 
duration. According to Avila et al. (2020), the 
updated TOMCAST model determines the timing 
of fungicide applications by assessing the DSV for 
each treatment. This method achieves disease 
control comparable to weekly fungicide 
applications but with fewer treatments, resulting 
in more efficient fungicide use and improved 
disease management.  
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Watermelons (anthracnose, gummy stem 
blight) and muskmelons (alternaria) 
Alternaria leaf blight, caused by the fungus 
Alternaria cucumerina, poses a significant threat 
to muskmelons, while watermelons show relative 
resistance. In muskmelons, the disease can cause 
considerable damage, leading to earlier ripening 
and reduced fruit quality. Another critical disease, 
Gummy Stem Blight (GSB), caused by the fungus 
Didymella bryoniae, affects a wide range of 
cucurbits, including watermelons, muskmelons, 
squash, and pumpkins. As noted by Keinath et al. 
(2007), GSB can severely impact plant health, 
resulting in substantial yield losses. 
Anthracnose, caused by the fungus 
Colletotrichum orbiculare, is yet another severe 
disease affecting watermelons and muskmelons. 
It significantly reduces yields and marketability 
due to its widespread effects on various parts of 
the plant. 
To help growers manage these diseases, the 
MELCAST system was developed as a forecasting 
tool for diseases such as Alternaria leaf blight, 
anthracnose, and GSB. It optimizes fungicide 
applications by leveraging environmental data—
specifically hourly leaf moisture and 
temperature. This approach not only improves 
disease control but also minimizes unnecessary 
fungicide use (Keinath et al., 2007). 
The MELCAST models, developed through 
controlled-environment research and validated 
in field studies, translate leaf wetness and 
temperature data into Environmental 
Favorability Index (EFI) values. Fungicide 
applications are then scheduled based on these 
EFI values rather than on fixed intervals (e.g., 
weekly or biweekly). This technique, known as 
scheduling by epidemiological time, ensures that 
treatments are responsive to actual disease risk 
conditions. 
MELCAST can be customized to local conditions 
by incorporating site-specific weather data and 
sensor information, ensuring its effectiveness 
across various growing environments. However, 
the accuracy and reliability of sensors used to 
measure leaf wetness and temperature are 
critical, as inconsistencies in data quality can 
affect the system’s performance. Additionally, the 
interface and data presentation of MELCAST 
might pose challenges for less tech-savvy users, 
potentially hindering its use in practice. 

 
Limitations in plant disease forecasting 
Research on plant disease forecasting has made 
significant strides, but there are still limitations 
and areas for improvement. Some limitations that 
challenge plant disease forecasting models 

include: i) data quality and availability; ii) 
complexity of disease dynamics; iii) model 
accuracy and reliability (forecasting models are 
based on assumptions and simplifications, which 
may not account for all local variations or 
unforeseen changes in environmental 
conditions); iv) rapid changes in climate; v) 
economic constraints; and vi) scale and 
adaptability, whereby many models are 
developed for specific crops or regions and may 
not be easily adaptable to different contexts or 
crops. 
 

Conclusions 
In conclusion, plant disease forecasting serves as 
a vital tool in mitigating crop losses and 
facilitating the timely implementation of 
preventive measures. These systems rely heavily 
on mathematical and statistical models that 
incorporate both weather forecasts and historical 
data to predict disease outbreaks effectively. 
Despite their importance, several challenges limit 
their widespread effectiveness, including the 
dependence on precise and reliable climatic data, 
the high costs associated with implementation, 
and the variability of local environmental 
conditions. To address these limitations and 
improve the utility of forecasting systems, it is 
critical to focus on strategies such as enhancing 
data collection methods, integrating advanced 
modeling techniques like machine learning, and 
designing solutions tailored to specific regional 
conditions. Additionally, fostering collaboration 
among plant pathologists, climatologists, and 
data scientists can drive innovation and 
adaptation of these tools, enabling them to 
respond to the growing challenges posed by 
climate change, the emergence of new pathogens, 
and advancements in agricultural technologies. 
By prioritizing these improvements, plant disease 
forecasting can become more accurate, 
accessible, and impactful in safeguarding global 
food security. 

 
Acknowledgments 
The authors acknowledge the Division of Plant 
Pathology and Division of Agricultural 
Entomology, School of Agricultural Sciences, 
Karunya Institute of Technology and Sciences, 
Coimbatore, India. 
 
Conflict of Interest 
The authors indicate no conflict of interest in this 
work. 
 

References 
Afifi MA, Zayan SA. 1973. Implementation of EGY-



Sangeetha et al.,                                                    Int. J. Hort. Sci. Technol. 2025 12 (3): 821-834 

 

831 

 

BLIGHTCAST the first computer simulation 
model for potato late blight in 
Egypt. Phytopathology 63(9), 1161. 

Agrios GN. 2005. Plant Pathology. Elsevier 
Academic Press, 952. 

Arora RK, Ahmad I, Singh BP. 2012. Forecasting 
late blight of potato in Punjab using JHULSACAST 
model. Potato Journal 39(2). 

Ashizawa T, Sasahara M, Ohba A, Hori T, Ishikawa 
K, Sasaki Y, Kuroda T, Harasawa R, Zenbayashi KS, 
Koizumi S. 2005. Evaluation of a leaf blast 
simulation model (BLASTMUL) for rice multilines 
in different locations and cultivars, and effective 
blast control using the model. Rice is Life: 
Scientific perspectives for the 21st century, 477-
479. 

Aust HJ, Hau B, Kranz J. 1983. Epigram-a 
simulator of barley powdery mildew/Epigram-
ein Simulator des Gerstenmehltaus. Zeitschrift 
für Pflanzenkrankheiten und Pflanzenschutz. 
Journal of Plant Diseases and Protection 35, 244-
250. 

Avila M, Lourenco JV, Quezado-Duval AM, Becker 
WF, de Abreu-Tarazi MF, Borges LC, dos Reis 
Nascimento A. 2020. Field validation of TOMCAST 
modified to manage Septoria leaf spot on tomato 
in the central-west region of Brazil. Crop 
Protection 138, 105333. 

Bhattacharyya SK, Phadtare SG, Khanna RN, 
Srivastava DS, Singh DS, Prasad B. 1983. Efficacy 
of some fungicides in controlling late blight of 
potato in India. Crop Protection 142, 105-109. 

Bhupathi P, Sevugan P.  2021. Application of 
hyperspectral remote sensing technology for 
plant disease forecasting: An applied 
review. Annals of the Romanian Society for Cell 
Biology 25(6), 4555-4566. 

Buja I, Sabella E, Monteduro AG, Chiriacò MS, De 
Bellis L, Luvisi A, Maruccio G. 2021. Advances in 
plant disease detection and monitoring: From 
traditional assays to in-field 
diagnostics. Sensors 21(6), 21-29. 

Calvero SB, Teng PS. 1991. BLASTSIM. 2-a model 
for tropical leaf blast-rice pathosystem. Pest 
Management Council of the Philippines, Manila 
(Philippines). Conference 22. 

Chattopadhyay C, Agrawal R, Kumar A, Meena RL, 
Faujdar K, Chakravarthy VK, Kuma  Goyal P, 
Meena PD,  Shekhar C. 2011. Epidemiology and 
development of forecasting models for White rust 
of Brassica juncea in India. Archives of 
Phytopathology and Plant Protection 44(8), 751-

763. 

Chemura A, Mutanga O, Dube T. 2017. 
Separability of coffee leaf rust infection levels 
with machine learning methods at Sentinel-2 MSI 
spectral resolutions. Precision Agriculture 18, 
859-881. 

Coakley SM. 1988. Variation in climate and 
prediction of disease in plants. Annual Review of 
Phytopathology 26(1), 163-181. 

Cowgill WJ, Tietjen WH, Johnston SA, Nitzsche PJ. 
2005. Early blight forecasting systems: 
evaluation, modification, and validation for use in 
fresh-market tomato production in Northern 
New Jersey. HortScience 40(1), 85-93. 

Dubey SC. 2005. Role of weather on development 
of cercospora leaf spot (Cercospora arachidicola) 
on groundnut (Arachis hypogaea). The Indian 
Journal of Agricultural Sciences 75(4). 

Erich J, Kleinhenz B. 2003. decision support 
systems for the control of late blight 
(Phytophthora infestans) of potato. Predavanj in 
Referatov 187. 

Forrer HR, Gujer HU, Fried PM. 1993. PhytoPRE-a 
comprehensive information and decision support 
system for late blight in potatoes. Phytoparasitica 
34-38. 

 Francl LJ. 2001. The disease triangle: a plant 
pathological paradigm revisited. The Plant Health 
Instructor 10. 

Friedric S, Boyle C. 1997. Simulation of infection 
probability of powdery mildew in winter 
wheat. IFAC Proceedings Volumes 30(26), 243-
248. 

Grünwald NJ, Rubio-Covarrubias OA, Fry WE. 
2000. Potato late-blight management in the 
Toluca Valley: Forecasts and resistant 
cultivars. Plant Disease 84(4), 410-416. 

Grünwald N, Montes GR, Saldaña HL, Covarrubias 
OR, Fry WE. 2002. Potato late blight management 
in the Toluca Valley: Field validation of SimCast 
modified for cultivars with high field 
resistance. Plant Disease 86(10), 1163-1168. 

Gujer HU. 1991. Integrated control of potato late 
blight (Phytophthora infestans) in Switzerland: 
concept and first results 1. EPPO Bulletin 21(1), 
61-66. 

Gurevich BI, Filippov AV, Tverskoi DL. 1979. 
Forecasting the development of harmfulness of 
potato late blight under different meteorological 
conditions on the basis of a simulation model 
“Epiphtora.” Mikologiia i fitopatologiia, 34-38. 



Sangeetha et al.,                                                    Int. J. Hort. Sci. Technol. 2025 12 (3): 821-834 

 

832 

Gutsche V. 1993. PROGEB—a model-aided 
forecasting service for pest management in 
cereals and potatoes 1. EPPO Bulletin 23(4), 577-
581. 

Hasanaliyeva G, Ammour M, Yaseen T, Rossi V, 
Caffi T. 2022. Innovations in disease detection 
and forecasting: a digital roadmap for sustainable 
management of fruit and foliar 
disease. Agronomy 12(7), 1707. 

Hayashi T, Koshimizu Y. 1988. Computer program 
BLASTAM for forecasting occurrence of rice leaf 
blast. Bull Tohoku Nat Agric Exp Stn 78, 123-138. 

Hwang SF, Strelkov SE, Turnbull GD, Manolii V, 
Howard RJ, Hartman M, Laflamme P. 2008. Soil 
treatments and amendments for management of 
clubroot on canola in Alberta. Canadian J. Plant 
Science 91, 999-1010. 

Hyre RA. 1954. Progress in forecasting late blight 
of potato and tomato. Plant Disease Reporter 38, 
245-253. 

Ishiguro K, Hashimoto A. 1991. Computer-based 
forecasting of rice blast epidemics in Japan. 
In International Rice Research Conference, Seoul 
(Korea Republic), IRRI. 24-39. 

Javaid M, Haleem A, Singh RP, Suman R. 2022. 
Enhancing smart farming through the 
applications of Agriculture 4.0 
technologies. International Journal of Intelligent 
Networks 3, 150-164. 

Juroszek P, Von Tiedemann A. 2011. Potential 
strategies and future requirements for plant 
disease management under a changing 
climate. Plant Pathology 60(1), 100-112. 

Keinath AP, Everts KL, Langston DB, Egel DS, 
Holmes GJ. 2007. Multi-state evaluation of 
reduced-risk fungicides and Melcast against 
Alternaria leaf blight and gummy stem blight on 
muskmelon. Crop Protection 26(8), 1251-1258. 

Kim CK, Kim CH. 1993. The rice leaf blast 
simulation model EPIBLAST. In Systems 
approaches for agricultural development: 
Proceedings of the International Symposium on 
Systems Approaches for Agricultural 
Development, 2-6 December 1991, Bangkok, 
Thailand. Springer Netherlands 309-321.  

Kim Y, Roh JH, Kim HY. 2017. Early forecasting of 
rice blast disease using long short-term memory 
recurrent neural networks. Sustainability 10(1), 
34. 

Kleinhenz B, Falke K, Kakau J, Rossberg D. 2007. 
SIMBLIGHT1–A new model to predict the first 
occurrence of potato late blight. EPPO Bulletin 

37(2), 339-343. 

Kranz J. 1979. Simulation of Epidemics Caused by 
Venturia inaequalis (Cooke) Aderh. 1. EPPO 
Bulletin 9(3), 235-241. 

Krause RA, Massie L B, Hyre RA. 1975. Blitecast: a 
computerized forecast of potato late blight. Plant 
Disease Reporter 59, 95. 

Krause RA, Massie LB. 1975. Predictive systems: 
modern approaches to disease control. Annual 
Review of Phytopathology 13(1), 31-47. 

Lahlali R, Ezrari S, Radouane N, Kenfaoui J, 
Esmaeel Q, El Hamss H, Belabess Z, Barka EA. 
2022. Biological control of plant pathogens: A 
global perspective. Microorganisms 10(3), 596. 

Lightner GW, Steiner PW. 1992. An update on 
version 4.1 of the MARYBLYTTM computer 
program for predicting fire blight. In VI 
International Workshop on Fire Blight 338, 131-
136. 

Luck J, Spackman M, Freeman A, Tre, Bicki P, 
Griffiths W, Finlay K, Chakraborty S. 2011. 
Climate change and diseases of food crops. Plant 
Pathology 60(1), 113-121. 

Madden L, Pennypacker SP, MacNab AA. 1978. 
FAST, a forecast system for Alternaria solani on 
tomato. Phytopathology 68(9),1354-1358. 

Mandal N, Adak S, Das DK, Sahoo RN, Kumar A, 
Viswanathan C, Mukherjee J, Gakhar S. 2022. 
Characterization of rice blast disease using 
greenness index, canopy temperature and 
vegetation indices 81-89. 

McCoy RE. 1976. MYCOS, a computer simulator of 
Ascochyta blight of Chrysanthemum. 
In Proceedings of the Florida State Horticultural 
Society 89, 296-298. 

Narouei-Khandan HA, Shakya SK, Garrett KA, 
Goss EM, Dufault NS, Andrade-Piedra JL, Asseng S, 
Wallach D, Bruggen AHV. 2020. BLIGHTSIM: A 
new potato late blight model simulating the 
response of Phytophthora infestans to diurnal 
temperature and humidity fluctuations in 
relation to climate change. Pathogens 9(8), 659. 

Ohta K, Chib S, Shimad K. 1982. Simulation of rice 
leaf blast using BLASTCAST, a plant disease 
simulator. Annual Report of the Society of Plant 
Protection of North Japan 9-11. 

Olatinwo R, Prabha TV, Paz JO, Hoogenboom G. 
2012. Predicting favourable conditions for early 
leaf spot of peanut using output from the weather 
research and forecasting (WRF) 
model. International Journal of Biometeorology 



Sangeetha et al.,                                                    Int. J. Hort. Sci. Technol. 2025 12 (3): 821-834 

 

833 

 

56, 259-268. 

Pande S, Rajesh TR, Kishore GK. 2004. Effect of 
temperature and leaf wetness period on the 
components of resistance to late leaf spot disease 
in groundnut. Plant Pathology Journal 20(1), 67-
74. 

Pierce FJ, Nowak P. 1999. Aspects of precision 
agriculture. Advances in Agronomy 67, 1-85. 

Popkova EG, Sozinova AA, Sofiina EV. 2022. Model 
of agriculture 4.0 based on deep learning: 
Empirical experience, current problems and 
applied solutions. In Smart Innovation in 
Agriculture, 333-346.  

Raatjes P, Hadders J, Martin D, Hinds H. 2004. 
PLANT-Plus: Turn-key solution for disease 
forecasting and irrigation management. In 
Decision Support Systems in Potato Production 
169-186. Wageningen Academic. 

Raid R N, Pernezny K, Havranek N, Sanchez J, 
Saddler B. 2008. Weather-based forecasting 
systems reduce fungicide use for early blight of 
celery. Crop Protection 27(3-5), 396-402. 

Raj M, Gupta S, Chamola V, Elhence A, Garg 
Atiquzzaman M, Niyato D. 2021. A survey on the 
role of the Internet of Things for adopting and 
promoting Agriculture 4.0. Journal of Network 
and Computer Applications 187, 103-107. 

Raji SN, Subhash N, Ravi V, Saravanan R, Mohanan 
CN, Nita S, Kumar TM. 2015. Detection of mosaic 
virus disease in cassava plants by sunlight-
induced fluorescence imaging: A pilot study for 
proximal sensing. International Journal of 
Remote Sensing 36(11), 2880-2897. 

Rehman A, Jingdong L, Khatoon R, Hussain I, Iqbal 
MS. 2016. Modern agricultural technology 
adoption its importance, role and usage for the 
improvement of agriculture. Life Science Journal 
14(2), 70-74. 

Reinink K. 1986. Experimental verification and 
development of EPIPRE, a supervised disease and 
pest management system for wheat. Netherlands 
Journal of Plant Pathology 92, 3-14. 

Richard BA, Fitt BD. 2022. Control of crop 
diseases through integrated crop management to 
deliver climate-smart farming systems for low-
and high-input crop production. Plant Pathology 
71(1), 187-206. 

Ristaino J, Anderson PK, Bebber DP, Brauman KA, 
Cunniffe NJ, Fedoroff NV, Finegold C, Garrett KA, 
Gilligan CA, Jones CM, Martin MD. 2021. The 
persistent threat of emerging plant disease 
pandemics to global food security. Proceedings of 

the National Academy of Sciences 118(23), 20-
25. 

Rossi V, Giosue S, Bugiani R. 2007. A-scab (apple-
scab), a simulation model for estimating risk of 
Venturia inaequalis primary infections. EPPO 
Bulletin 37(2), 300-308. 

Schepers H. 1995. ProPhy: a computerized expert 
system for control of late blight in potatoes in the 
Netherlands. In Proceedings XIII International 
Plant Protection Congress 48. 

Shakya SK, Goss EM, Dufault NS, Van Bruggen AC. 
2015. Potential effects of diurnal temperature 
oscillations on potato late blight with special 
reference to climate 
change. Phytopathology 105(2), 230-238. 

Singh BP, Govindakrishnan PM, Ahmad I, Rawat S, 
Sharma S, Sreekumar J. 2016. INDO-
BLIGHTCAST–a model for forecasting late blight 
across agroecologies. International Journal of 
Pest Management 62(4), 360-367. 

Sing B, Ahmad I, Sharma VC, Shekhawat CS. 2000. 
JHULSACAST: A computerized forecast of potato 
late blight in western Uttar Pradesh. Potato 
Journal 27(2), 25-34. 

Singh VK, Pundhir VS. 2013. Forecasting models 
for potato late blight management-a 
review. Agricultural Reviews 34(2), 87-96. 

Small IM, Joseph L, Fry WE. 2015. Development 
and implementation of the BlightPro decision 
support system for potato and tomato late blight 
management. Computers and Electronics in 
Agriculture 115, 57-65. 

Sparks AH, Forbes GA, Hijmans J, Garrett KA. 
2014. Climate change may have limited effect on 
global risk of potato late blight. Global Change 
Biology 20(12), 3621-3631. 

Stephan S, Gutsche V. 1980. Ein algorithmisches 
modell zur simulation der phytophthora-
epidemie (SIMPHYT). Archives of 
Phytopathology and Plant Protection 16(3), 183-
192. 

Stevenson WR. 1993. IPM for potatoes: a 
multifaceted approach to disease management 
and information delivery. Plant Disease 24, 84-88. 

Stirm WL, Bauer M, Loewe O. 1971. Predicting 
southern corn leaf blight development in 1971 by 
computer simulator EPIMAY. In Proceedings of 
the Indiana Academy of Science (81) 325-329. 

Taylor MC, Hardwick NV, Bradshaw NJ, Hall AM. 
2003. Relative performance of five forecasting 
schemes for potato late blight (Phytophthora 



Sangeetha et al.,                                                    Int. J. Hort. Sci. Technol. 2025 12 (3): 821-834 

 

834 

infestans) and accuracy of infection warnings and 
reduction of unnecessary, theoretical, fungicide 
applications. Crop Protection 22(2), 275-283. 

Teng PS, Blackie MJ, Close RC. 1980. Simulation of 
the barley leaf rust epidemic: Structure and 
validation of BARSIM—I. Agricultural 
Systems 5(2), 85-103. 

Waggoner PE, Horsfall, J. 1969. Epidemic: a 
simulator of plant disease written for a computer. 
Bulletin. Connecticut Agricultural Experiment 
Station, 698. 

Wallin JR. 1962. Summary of recent progress in 
predicting late blight epidemics in United States 
and Canada. American Potato Journal 39, 306-
312. 

 Zadoks JC. 1981. EPIPRE: a disease and pest 
management system for winter wheat developed 
in The Netherlands 1. EPPO Bulletin 11(3), 365-
369. 

Zheng Q, Huang W, Xia Q, Dong Y, Ye H, Jiang H, 
Chen S, Huang S. 2023. Remote sensing 
monitoring of rice diseases and pests from 
different data sources: A review. Agronomy 
13(7), 1851. 


