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 Fruit quality is crucial at various stages of the supply chain, including 
harvest, packaging, processing, grading, transportation, storage, and 
shelf life. This study investigates the potential of the Vis/SWNIR 
spectral region (425–950 nm) combined with chemometrics to predict 
anthocyanin content, taste index (SSC/TA), and flesh firmness in fig 
fruit. Additionally, we compare the effectiveness of artificial neural 
networks (ANN), k-nearest neighbors (KNN), and discriminant 
analysis (DA) classifiers in categorizing figs as ripe, semi-ripe, or 
unripe. A total of 167 fig fruits were used for model calibration and 
validation. We evaluated the performance of regression ANN and 
classifiers (KNN, ANN, and DA) using common pretreatments, such as 
moving average (MA), standard normal variate (SNV), and 
multiplicative scatter correction (MSC), as well as their combinations. 
The results indicated that the combination of MA + D1 + SG 
preprocessing yielded the highest mean relative prediction deviation 
(RPD) of 1.55 for predicting flesh firmness (RMSEP = 1.83, rp = 0.76), 
while the model performances for predicting anthocyanin content and 
taste index were deemed inadequate. For classification accuracy, ANN 
and DA achieved mean accuracies of 89.86% and 89.52%, respectively, 
using MA + SNV and MA + MSC pretreatments. This study provides 
valuable insights into the application of spectroscopy (425–950 nm) 
for assessing the quality attributes of fig fruit. 
Abbreviations: Artificial Neural Networks (ANN), First Derivative (D1), 
Discriminant Analysis (DA), k-Nearest Neighbors (KNN), Moving 
Average (MA), Multiplicative Scatter Correction (MSC), Near Infra-Red 
(NIR), Number of the test set samples (np), Principle Component (PC), 
First Principle Component (PC1), Second Principle Component (PC2), 
Third Principle Component (PC3), Principle Components Analysis 
(PCA), Partial Least Squares (PLS), Light reflection percentage (R), 
Ripe (R), Coefficient of determination (R), Light intensity of the 
ambient (RD), Random Forest (RF), Root Mean Square Error of 
Prediction (RMSEP), Prediction correlation coefficient (rp), Residual 
Prediction Deviation (RPD), Light intensity of the white reference 
material (RR), Light intensity of the sample (RS), Standard Deviation 
(SD), Savitzky-Golay (SG), Standard Normal Variate (SNV), Semi-ripe 
(SR), Soluble Solids Content (SSC), Short Wave Near Infrared (SWNIR), 
Titratable Acidity (TA), Number of samples that are correctly classified 
(TC), Unripe (UR), Measured value of sample I (Xi), Average value of 
measurements (𝑋̅),  Predicted value of sample I (Yi), Average value of 
predictions (𝑌̅) 
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Introduction
Fig fruit (Ficus carica L.) is renowned for its 
appealing flavor, vibrant color, and medicinal 
properties. According to Lama et al. (2020), 
anthocyanins play a key role in the fruit's color 
and contribute significantly to its antioxidant 
content. Taste, an important quality attribute for 
fresh fruits and vegetables, is determined by a 
combination of sourness and sweetness, which 
correlate with titratable acidity (TA) and soluble 
solids content (SSC), respectively. Thus, the ratio 
of SSC to TA serves as an index of fruit taste 
acceptability (Abasi et al., 2018). Additionally, 
flesh firmness is crucial for detecting mechanical 
damage and determining shelf life (Sun et al., 
2021). It is also a key measure of ripeness in the 
non-destructive grading of certain fruits (Matteoli 
et al., 2015; Torkashvand et al., 2017). 
Vis/NIR spectroscopy enables rapid, accurate, 
and non-destructive qualitative evaluations 
without requiring preliminary sample 
preparation. Advances in optical technology have 
resulted in compact spectrometers that are 
lightweight, cost-effective, and high-performing, 
meeting the demand for quick and accurate 
measurements (Cortés et al., 2019; Abasi et al., 
2020). The Vis/SWNIR region (310–1100 nm) is 
particularly useful due to the prevalence of water 
absorption bands, with significant wavelengths 
reported at 970, 1200, 1450, 1950, and 2250 nm 
(Magwaza et al., 2012). Given that fruits and 
vegetables contain 80-90% water, this spectral 
region reduces the influence of water on the 
acquired spectra, making it favorable for studies 
of fruit quality attributes. 
While the application of Vis/NIR spectroscopy for 
quantitative and qualitative measurements of 
various fruits and vegetables has been 
documented (Wang et al., 2015; Beghi et al., 2017; 
Cortés et al., 2019), research specifically focused 
on predicting fig fruit quality attributes remains 
limited. This study aims to address this gap by 
evaluating Vis/SWNIR reflectance spectroscopy 
in the 425–950 nm range to non-destructively 
predict qualitative attributes of fig fruit, including 
anthocyanin content, firmness, and taste index. 
Additionally, we investigated the effectiveness of 
ANN, KNN, and DA classifiers, along with common 
pretreatments, to classify figs as ripe, semi-ripe, 
or unripe. 
 

Materials and Methods 
Fruits 
A total of 180 fig fruits, from the “Siahe Hazaveh” 
genotype, were harvested in July 2021 from a 15-
year-old tree in an orchard located in Hezaveh 
village, Markazi province, Iran. The fruits were 

collected at three ripeness stages: ripe (dark 
purple), semi-ripe (pale purple), and unripe 
(green), with 60 samples per stage. They were 
then transported to the postharvest laboratory at 
Arak University. This region experiences 
moderate rainfall and relative humidity, alongside 
relatively high temperatures. The “Siahe Hazaveh” 
genotype is noted for its favorable taste, high 
productivity, attractive appearance, high juice 
content, and elevated levels of total soluble solids 
and anthocyanins. 
 

Spectroscopy setup and measurements 
The spectroscopy system used in this study 
comprised a portable spectrometer (Ocean Optics 
Flame series, USA) with dimensions of 88.9 × 
63.5 × 31.9 mm and a weight of 265 g. It operates 
within a wavelength range of 350-1000 nm, 
featuring 2048 pixels, a signal-to-noise ratio of 
250:1, and an optical resolution of 0.1 to 10 nm. A 
12-Volt halogen bulb served as the light source, 
complemented by Qp400 optical fibers, a sample 
holder, and an interactance probe. Light reflection 
at each wavelength was recorded using Eq. 1 
(Cavaco et al., 2009). 
 

R (%) 100( ) ( )                                                                                   (1)D R DSR R R R= − −
                                                                        

 
R is the light reflection percentage, RS is the light 
intensity of the sample, RD is the light intensity of 
the ambient, and RR is the light intensity of the 
white reference material. Spectroscopy of each 
sample was performed in its three central 
positions (along the equator line) at 
approximately 120 degrees from each other, and 
12 scans per position were acquired using Spectra 
Suite software. The mean value of scans was 
considered to reduce any possible noises from the 
detector temperature during the spectra 
acquisition (Nicolai et al., 2007). Hereafter, the 
mean of 36 scans was considered as the spectrum 
of each fig sample. After acquiring the spectrum 
of each sample, reference measurements were 
performed in the laboratory. 
 

Fruit quality attributes 
Anthocyanin 
The content of total anthocyanin was determined 
according to the pH differential method (Kim et 
al.,  2003). Absorbance was measured at 520 and 
700 nm and expressed as cyanidin-3-glycoside 
(molecular weight of 449.2) equivalents per 100 
g of fresh fruit weight. 
 
 

(1) 
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Flesh firmness 
Flesh firmness of figs was recorded using a 
penetrometer (STEP SYSTEM, Germany) with an 
8 mm diameter plunger. After removing the 
epidermis at two equatorial positions, a 5 mm 
plunger measured the fruits flesh firmness as kg 
cm−2. 
 

SSC/TA 
The soluble solids content was determined  in the 
juice of fig fruits with a refractometer (Atago, 
PAL-1, Japan) at 20 ± 1 °C and results expressed 
as the means of % (°Brix). The pH of the juice was 
recorded using a pH meter (Az 86502, Taiwan). 
The titratable acidity (TA) was determined by 
titration with 0.1 N NaOH up to pH 8.1, using 1 mL 
of diluted juice in 25 mL distilled water, and the 
results were expressed as % citric acid. Taste 
index was calculated by dividing SSC by TA % 
(Saki et al.,  2019). 
 

Chemo-metrics 
Pretreatment 
Various pretreatment methods have been 
developed, each tailored for specific purposes. 
However, identifying the best pretreatment can 
be challenging, as different researchers often use 
varied samples and experimental conditions. In 
this study, after acquiring the spectra, commonly 
used pretreatments were applied (Nicolai et al., 
2007). The moving average (MA) was utilized as 
one of the most common smoothing methods, 
incorporating five neighborhood points and 
quadratic polynomials to mitigate noise 
amplification. Additionally, normalization, 
standard normal variate (SNV), and mean 
scattering correction (MSC) were employed to 
address light scattering effects in the acquired 
spectra. The first derivative combined with a 
Savitzky-Golay (SG) filter was applied to enhance 
spectral properties and eliminate baseline shifts 
(Tiecher et al., 2020). Furthermore, Hotelling’s T-
squared distribution method was used to identify 
outliers (Maniwara et al., 2019; Mouazen et al., 
2010). 
 

Principle components analysis (PCA) 
Principal Component Analysis (PCA) is a 
technique for extracting useful information from 
data, allowing for exploration of data and 
variables, their relationships, and the overall 
correlation between them (Beghi et al., 2017). 
PCA generates new variables that are linear 
combinations of the original variables. The first 
principal component captures the most variance, 
while the second principal component contains 
information not represented by the first, with the 

same principle applying to subsequent 
components (Callao and Ruisánchez, 2018). In 
this study, the first four principal components 
were used as inputs for regression analysis and 
classification with ANN. 
 

Artificial neural networks (ANN) and 
classifiers 
ANN are robust nonlinear methods for data 
analysis, capable of detecting and modeling 
complex relationships between inputs and 
outputs (Guo et al., 2016). An ANN typically 
consists of three layers: an input layer, hidden 
layers, and an output layer (Wang et al., 2015). In 
this study, the ANN topology included an input 
layer with four neurons representing the first four 
principal components, an output layer with three 
neurons corresponding to anthocyanin, flesh 
firmness, and taste index, and hidden layers with 
an optimal number of neurons determined 
automatically by the software. The application of 
classifiers for the qualitative analysis of fruits has 
been explored in various studies (Amuah et al., 
2019; Kaiyan et al., 2020). Here, we compared the 
performance of commonly used classifiers—ANN, 
KNN, and DA—for classifying ripe, semi-ripe, and 
unripe fig fruits. 
 

Validation  
The evaluation of the models was performed 
using random subsampling while knowing that 
“hold out” was repeated ten times (Han et al., 
2011). In this method, the acquired spectra were 
randomly partitioned into two independent sets, 
a training set and a validation set (20%). In each 
iteration, the training set was used to derive 
regression ANN and classifiers. The average of the 
overall accuracy and prediction index obtained 
from the ten validation sets, were reported. In this 
method, there is no problem regarding unrealistic 
prediction and classification results. The 
predictive ability of regression ANN was 
evaluated using the root mean square error of 
prediction (RMSEP), the prediction correlation 
coefficient (rp), and the residual prediction 
deviation (RPD), Eqs. 2-4 (Beghi et al.,  2017; Guo 
et al.,  2016; Theanjumpol et al.,  2019; Wang et 
al.,  2015). Meanwhile, the mean overall accuracy 
measure was used to evaluate the classifiers in 
validation sets Eq. 5. 
 

n

2

i i p

i=1

RMSEP= (Y -X ) n                                                                                                                                (2)
 

n n n2 2

p i i i ii=1 i=1 i=1
r = (X -X)(Y -Y) ( (X -X) (Y -Y) )                                                                                   (3)  

 

(2) 

(3) 
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n

2

i p

i=1

RPD= (X -X) n -1 RMSEP =SD RMSEP                                                                                                   (4)
 

 

p                                                                                                                                                         %Accuracy=( TC n )×100  (5)
 

 
Where Xi is the measured value of sample i, Yi is 
the predicted value of sample i, np is the number 
of the test set samples, 𝑋̅  is the average value of 
measurements, 𝑌̅  is the average value of 
predictions, SD is the standard deviation of 
measurements in the test set, TC is the number of 
samples that are correctly classified. The 
Unscrambler X 10.4 software was applied for 
spectra pretreatments and PCA. Calibration and 

validation of classifiers and predictive model 
were done by IBM SPSS Modeler v18.0 software. 
  

Results  
Statistics of the samples 
After eliminating the outliers, the statistical 
characteristics of the fig fruit samples was 
presented in the Table 1. As shown, with the 
completion of the ripening process of fig fruit, the 
mean anthocyanin content increased (0.11-0.86 
mg 100g-1) as well as the sugar content and the 
mean of taste index (16.65-26.40). However, the 
mean firmness value decreased (8.97-3.83 Kg cm-
2).

 
Table 1. Statistical characteristics of the samples for anthocyanin, flesh firmness, and taste index. 

 
Anthocyanin (mg 100 g-1) Flesh firmness (Kg cm-2) SSC/TA 

Min Max Mean SD Min Max Mean SD Min Max Mean SD 

Ripe (56) 0.12 2.00 0.86 0.46 2.17 6.87 3.83 1.05 5.83 72.67 26.40 14.78 

Semi-ripe (54) 0.04 1.70 0.76 0.31 2.63 9.70 4.98 1.65 4.56 56.67 19.49 10.45 

Unripe (57) 0.02 0.89 0.11 0.15 4.17 15.03 8.97 2.65 1.75 35.00 16.65 5.75 

SSC: Soluble Solids Content, TA: Titratable Acidity. 

 
Spectra 
Figures 1a and 1b display the spectra and the 
mean reflectance spectra of ripe, semi-ripe, and 
unripe fig samples within the range of 425-950 

nm. The initial and final wavelengths were 
excluded due to significant noise. Notably, unripe 
figs exhibited a higher percentage of mean light 
reflection across all wavelengths compared to the 
other groups (Fig. 1b). 

  

Fig. 1. (a) All spectra, and (b) mean spectra of R, SR, and UR figs in the 425-950 nm band. R: Ripe, SR: Semi-ripe, UR: 
Unripe. 

 
Pretreatment 
Scatter plots for various pretreatments and the 
shapes of the pretreated spectra are shown in 
Figures 2a-d. The reflectance patterns varied 
within the 450-670 nm range, while they 
remained quite similar outside this band. Most 

pretreatments resulted in relatively effective 
separation in the PC1-PC3 coordinates. This can 
be attributed to the ability of mean scattering 
correction (MSC), standard normal variate (SNV), 
and normalization methods to mitigate light 
scattering effects. 

a b 

(4) 

(5) 
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Fig. 2. Scatter plots of R, SR, and UR figs spectra along with the shape of the spectra for the pretreatments of (a) MA + 
MSC, (b) MA + Normalize, (c) MA + D1 + SG, (d) MA + SNV. R: Ripe, SR: Semi-ripe, UR: Unripe. MA: Moving Average, 

MSC: Multiplicative Scatter Correction, D1: First Derivative, SG: Savitzky-Golay, SNV: Standard Normal Variate. 

 
Predictive ANN and classifiers  
The results of ANN and the developed classifiers 
validation are summarized in Table 2 and 3.  
The maximum mean value of RPD for anthocyanin 
prediction in MA + D1 + SG pretreatments was 
1.38 (rp = 0.69 and RMSEP = 0.31), which 
indicated the weakness of the developed ANN in 
the prediction of anthocyanin. The maximum 
mean value of RPD in the prediction of flesh 
firmness was 1.55 in MA + D1 + SG pretreatment 

(rp = 0.76 and RMSEP = 1.83). The maximum 
mean value of RPD in the prediction of SSC/TA 
was also 1.07 in MA + D1+ SG pretreatment (rp = 
0.37 and RMSEP = 11.53) (Table 2). The results 
of the validation set classification by ANN, KNN, 
and DA classifiers were 89.86, 87.02, and 89.52, 
which resulted from MA + SNV, MA + MSC, and 
MA + MSC pretreatments, respectively. Thus, ANN 
and DA provided higher overall accuracy for 
validating the samples (Table 3). 

 
 
Table 2.  Mean evaluation indices of ANN developed to predict of anthocyanin, flesh firmness, and taste index based on 

the different pretreatments. 

Pretreatments 
 

Anthocyanin 

(mg 100 g-1) 
 Flesh firmness (Kg cm-2)  SSC/TA 

 RMSEP rp RPD  RMSEP rp RPD  RMSEP rp RPD 

No preprocessing  0.32 0.68 1.32  1.84 0.75 1.54  12.15 0.26 1.01 

Smoothing 

(MA) 

SNV  0.32 0.66 1.32  1.99 0.72 1.42  12.21 0.23 1.01 

MSC  0.31 0.70 1.37  1.94 0.73 1.45  12.26 0.26 1.01 

Normalize  0.33 0.66 1.29  1.93 0.73 1.47  11.97 0.26 1.03 

D1 + SG  0.31 0.69 1.38  1.83 0.76 1.55  11.53 0.37 1.07 

Bold values indicate the best results for each attribute or index. ANN: Artificial Neural Networks, SSC: Soluble 

Solids Content, TA: Titratable Acidity, RMSEP: Root Mean Square Error of Prediction, rp: Prediction correlation 

coefficient, RPD: Residual Prediction Deviation, MA: Moving Average, MSC: Multiplicative Scatter Correction, 

D1: First Derivative, SG: Savitzky-Golay, SNV: Standard Normal Variate. 

 

 

Discussion 
According to our results, riper fig fruit exhibited 
higher mean anthocyanin content, sugar content, 
and taste index; however, its firmness decreased 
due to changes in cell wall composition and water 
content. This reduction in firmness can be 
attributed to the degradation of pectin and 

hemicellulose by specific enzymes in ripe fruits, 
leading to changes in the cell wall, softening, 
increased fruit transparency, deeper light 
penetration, and a consequently reduced 
percentage of light reflection (Cavaco et al., 2009; 
Pourdarbani et al., 2020). 
Various studies have examined the scattering 

d 
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status of samples in principal component 
coordinates (Teye et al., 2019; Theanjumpol et al., 
2019). The maximum RPD value for predicting 
flesh firmness was observed with the 
combination of MA, D1, and SG pretreatments. In 
developing a predictive model, an RPD value of 
less than 1.5 indicates that the model is not 
applicable; values between 1.5 and 2 suggest the 
model can estimate high and low values of the 
desired parameter; values between 2 and 2.5 
indicate the model can quantify the parameter; 

and values above 2.5 or 3 signify good to excellent 
predictive accuracy (Beghi et al., 2017). 
At lower RPD values (less than 2), slight 
differences were noted in model performance. For 
example, an RPD value of 1.4 to 1.8 was 
considered relatively appropriate, while an RPD 
of 1.8 to 2 indicated the model’s ability to quantify 
parameters (Mouazen et al., 2010; Rossel et al., 
2006). Based on these RPD values, the model can 
only predict low or high flesh firmness.

 

Table 3. Mean overall classification accuracy of R, SR, and UR samples by developed classifiers in the calibration and 
test sets based on a combination of different pretreatments. 

Pretreatments 
 KNN (%)  ANN (%)  DA (%) 

 Training Testing  Training Testing  Training Testing 

No preprocessing  89.14 83.54  87.65 86.41  86.08 86.65 

Smoothing 

(MA) 

SNV  88.26 83.14  88.70 89.86  87.06 88.95 

MSC  89.09 87.02  89.66 89.78  88.26 89.52 

Normalize  87.96 86.09  86.22 85.63  83.63 84.68 

D1 + SG  86.92 84.86  88.58 90.12  87.28 88.54 

Bold values indicate the best overall accuracy. R: Ripe, SR: Semi-ripe, UR: Unripe, ANN: Artificial Neural 

Networks, KNN: k-Nearest Neighbors, DA: Discriminant Analysis, MA: Moving Average, MSC: Multiplicative 

Scatter Correction, D1: First Derivative, SG: Savitzky-Golay, SNV: Standard Normal Variate. 

 

 
The spectral signatures related to sugars, 
primarily associated with C-H fundamental 
vibrations and their overtones, are mainly found 
at wavelengths beyond the 425-950 nm range 
(Golic et al., 2003). This may explain the model's 
failure to predict the taste index, which heavily 
depends on sugar content. 
In line with this study, Sun et al. (2021) developed 
RF and PLS models for predicting fig fruit 
hardness in the 950-1700 nm range and specific 
sub-bands. Their calibrated RF and PLS models 
yielded R2 values of 0.7355 and 0.7660, 
respectively. However, RF performed better than 
PLS overall in sub-band assessments. They 
concluded that RF can quickly and effectively 
predict fig hardness. Physiological changes after 
harvest affect the internal quality of figs during 
measurements. 
The softening of the fruit causes the acquired 
spectra deviate from the original information, and 
as a result, this will effect on the performance of 
the models. These limitations must be overcome 
in the future. The pretreatments of MSC (KNN and 
DA) and SNV (ANN) after MA provided the most 
excellent effect on increasing the accuracy of 
classifiers. 
 

Conclusions 
The spectra of figs in the 425-950 nm range 

displayed few peaks, attributed to the absorption 
of light by overtones and the combination of 
fundamental bond vibrations of the fig's organic 
constituents. The reflection spectra showed 
similar patterns across many wavelengths, 
prompting an investigation into the effectiveness 
of pretreatments, including MSC, normalization, 
SNV, and the first derivative after smoothing with 
a moving average. The first four principal 
components obtained from PCA were used as 
inputs for the predictive ANN model, as well as for 
the ANN, KNN, and DA classifiers. The mean 
evaluation indices for the validation sets 
indicated that the regression ANN could not 
accurately predict anthocyanin content or the 
taste index. However, it was effective in predicting 
high and low values of fruit firmness. When the 
performance of predictive models is lacking, 
conducting qualitative analyses using classifiers 
is a beneficial approach, as classification models 
generally exhibit higher accuracy than predictive 
models. ANN and DA demonstrated the highest 
overall accuracy for validating samples, with rates 
of 89.86% and 89.52%, respectively, highlighting 
their potential for practical applications. Further 
research is warranted to explore the performance 
of other predictive and classification models 
across different fig cultivars. 
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