Mehdi Mohebodini; Karim Farmanpour-Kalalagh
Abstract
Anethum graveolens L. is a vegetable-aromatic medicinal herb of Apiaceae family and cultivated in different parts of the world including Iran. The aim of this study was to study the chemical composition of essential oils in four Iranian dill ecotypes. The extracted essential oils compositions were different ...
Read More
Anethum graveolens L. is a vegetable-aromatic medicinal herb of Apiaceae family and cultivated in different parts of the world including Iran. The aim of this study was to study the chemical composition of essential oils in four Iranian dill ecotypes. The extracted essential oils compositions were different in the ecotypes so that 38, 27, 25, and 24 volatile constituents were identified in Ardabil, Isfahan, Mashhad, and Kerman ecotypes, respectively. Eighteen compounds such as Toluene, α-thujene, camphene, sabinene, β-pinene, β-myrcene, α-phellandrene, α-terpinene, β-phellandrene, undecane, sabinol, dill ether, carvacrol, germacrene D, dill apiole, neophytadiene, hexahydrofarnesyl acetone, and phytol were recognized in all ecotypes but in different amounts. Analysis of variance showed the significancy of α-thujene, β-pinene, β-myrcene, α-phellandrene, β-phellandrene, undecane, dill ether, sabinol, germacrene D, dill apiole, neophytadiene, and hexahydrofarnesyl acetone at 0.001 probability levels. Means comparison of significant compounds showed highest mean values for β-pinene, undecane, germacrene D, neophytadiene, hexahydrofarnesyl acetone, and phytol in Ardabil ecotype; α-thujene, β-myrcene, β-phellandrene, and dill ether in Mashhad ecotype; and α-phellandrene, sabinol, and dill apiole in Kerman ecotype. Factor analysis indicated that three main and independent factors accounted for 100% of the total variance. The first, second, and third factors with 47.5, 31.9, and 20.63 % of variance included 9, 6, and 4 compounds, respectively. The knowledge of essential oil compositions of the studied ecotypes could be useful to choose the appropriate for breeding purposes based on phytochemical diversity or for use in pharmaceutical and food industries for extraction of special compounds.
Karim Farmanpour-Kalalagh; Mehdi Mohebodini; Naser Sabaghnia
Abstract
In this study, the variability of essential oil composition in different parts of summer savory was investigated. Extraction of essential oils from air-dried leaves and healthy seeds was done using water-distillation in Clevenger-type apparatus for 4 h. In total, 23 and 24 components were identified ...
Read More
In this study, the variability of essential oil composition in different parts of summer savory was investigated. Extraction of essential oils from air-dried leaves and healthy seeds was done using water-distillation in Clevenger-type apparatus for 4 h. In total, 23 and 24 components were identified in the leaves and seeds of summer savory, respectively. Carvacrol (46.023%), Estragole (Methyl Chavicol) (6.257%), Caryophyllene (4.753%), and E-Caryophyllene (4.753%) were the major constituents in the seeds and Carvacrol (56.537%), γ-Terpinene (21.377%), and p-Cymene (8.587%) were the major constituents in the leaves. Among all constituents, Carvacrol, Caryophyllene, E-Caryophyllene, β-Bisabolene, cis-α-Bisabolene, Caryophyllene oxide, Z-Citral, E-Citral, γ-Terpinene, and δ-3-Carene were present in both of leaves and seeds. Significant positive and negative correlations were detected between constituents for the investigated parts of summer savory. In addition, the correlation analysis of same volatile constituents in seeds and leaves indicated that some constituents in one part of summer savory have a significant correlation with another part. Also, γ-Terpinene in leaves has a negative significant correlation with γ-Terpinene in the seeds.
Mina Taghizadeh; Mousa Solgi
Abstract
An important part of plant in vitro techniques is the sterilization of explants and the maintenance of aseptic conditions. Ideally, sterilizing materials should be effective on a vast range of microorganisms at low density. Nowadays, the use of compounds such as essential oils (EOs) and nanoparticles ...
Read More
An important part of plant in vitro techniques is the sterilization of explants and the maintenance of aseptic conditions. Ideally, sterilizing materials should be effective on a vast range of microorganisms at low density. Nowadays, the use of compounds such as essential oils (EOs) and nanoparticles is applicable in microbiology studies. The main objective of this experiment was to study the substitution probability of silver nanoparticles (SNPs), thymol and carvacrol as novel sterilization agents in the tissue culture of Cynodon dactylon. Explants were sterilized with 70% ethanol for 2 min, and then 30% Clorox for 15 min. Sterilization complementary treatments (SNPs, thymol and carvacrol) were applied at different concentrations (100 and 200 mg l-1) with exposure times of 30, 60 and 120 min. According to the results, infection of bermudagrass explants was controlled successfully by SNPs, thymol and carvacrol. Examination of various concentrations in different exposure times showed that 200 mg L-1 SNPs in combination with 100 mg L-1 thymol in 60 min inhibited microbial growth. Thymol and carvacrol were more effective than SNPs in controlling bacteria and fungi contaminations. Finally, these novel agents could be used as an alternative to common chemical treatments for elimination and control of microbial population explants in in vitro conditions.