Lavin Babaei; Mohammad Mehdi Sharifani; Reza Darvishzadeh; Naser Abbaspour; Mashhid Henareh
Abstract
To investigate photosynthetic response of some pear (Pyrus spp.) species to drought stress, a pot experiment was conducted using as factorial experiment based on completely randomized design (CRD) with three replication under greenhouse condition. The factors included five pear species including: P. ...
Read More
To investigate photosynthetic response of some pear (Pyrus spp.) species to drought stress, a pot experiment was conducted using as factorial experiment based on completely randomized design (CRD) with three replication under greenhouse condition. The factors included five pear species including: P. biossieriana, P. communis, P. glabra, P. salicifolia and P. syriaca and three levels of drought stress [(100%, 60% and 30% of field capacity (FC)]. According to the obtained results, different levels of drought stress significantly restricted morphological and physiological responses in all studied species. Increasing drought stress intensity reduced leaf relative water content (RWC), net photosynthetic rate, stomatal conductance, transpiration rate and intercellular carbon dioxide concentration when compared to their values in control plants. However, root/shoot dry weight ratio, specific leaf weight and stomatal density per unit of area were increased. In P. glabra exposed to severe stress (30% of FC), the values of root/shoot dry weigh ratio (0.85 g), specific leaf weight (23 mg cm-2), stomata density per unit of area, relative water content (73%) and net photosynthetic rate (3.9 µmol CO2 m-2 s-1) were significantly higher than the other species. P. syriaca, P. salicifolia, P. biossieriana and P. communis were placed in the next ranks, respectively based on their response to drought. In conclusion, P. glabra is reported as a more effective species in mitigating the adverse effects of drought by boosting its protective mechanisms than the other pear species.
Hamid Alipour
Abstract
Understanding mechanisms of salt tolerance, physiological responses to salt stress, and screening genotypes for breeding programs are important scientific issues remained to be investigated in pistachio. Therefore, current study was carried out to investigate response of different pistachio cultivars ...
Read More
Understanding mechanisms of salt tolerance, physiological responses to salt stress, and screening genotypes for breeding programs are important scientific issues remained to be investigated in pistachio. Therefore, current study was carried out to investigate response of different pistachio cultivars (G1, G2, Kaleghochi and UCB1) to salinity treatments (0.6 as control, 10, 20 dS m-1 using saline underground water) as a factorial experiment based on randomized complete block design with three replications in greenhouse of Iranian Pistachio Research Institute (Rafsanjan) in 2014-2015. Some physiological and nutrition properties of the pistachio cultivars measured in this study. Results showed decreased stomatal conductance, photosynthesis rate, chlorophyll content, and Fv/Fm in response to salinity treatments. The main cause of these changes was related to the altered ion contents along with the competition among ions for being absorbed by plant. Despite of sufficient amount of potassium in the soil, high concentrations of sodium and other associated elements such as calcium and magnesium decreased the ability of pistachio plants to absorb adequate amount of vital ions such as potassium. As a result of sodium accumulation and deficiency of potassium, K+/Na+ ratio was decreased in pistachio leaves. Consequently, toxicity of sodium ions in the plant cells reduced stomatal conductance and the rate of photosynthesis. Comparison between cultivars showed that for the most of the traits the difference between control and moderate salinity (10 ds m-1) in all cultivars was not significant. However, G2 cultivar showed higher ability to accumulate potassium and absorbed lower concentration of sodium, calcium, and magnesium under sever salinity treatment (20 ds m-1). These result suggested that G2 could be considered as a potential tolerant cultivar for cultivation in saline area.