Fatemeh Nazoori; Solmaz Poraziz; Seyed Hossein Mirdehghan; Majid Esmailizadeh; Elaheh ZamaniBahramabadi
Abstract
In the present study, effects of edible coatings using sodium alginate (SA) and sodium alginate in combination with ascorbic acid (AA) on the shelf-life extension of strawberries at 4±1°C was studied. A factorial experiment was performed based on a randomized complete block design with four ...
Read More
In the present study, effects of edible coatings using sodium alginate (SA) and sodium alginate in combination with ascorbic acid (AA) on the shelf-life extension of strawberries at 4±1°C was studied. A factorial experiment was performed based on a randomized complete block design with four replications. The treatments included control (distilled water), SA (1%, 2%, 3% w/v), SA in combination with AA (1% w/v) and the storage periods (7 and 14 days). The results showed that lightness (L*), chroma, firmness, total acidity, vitamin C, phenols, and antioxidant activity decreased during storage, but coating improved them in the sold-stored strwberries. SA2%+AA1% coating was the best treatment in maintaining the fruit quality. Firmness, weight loss, fruit L*, fruit chroma, sepal L*, sepal chroma, total phenolics, and polyphenol oxidase activity were decreased by 15%, 1.95%, 16.7%, 2.66%, 10.23%, 16%, 19.47% and 2.5%, respectively for SA2%+AA1% samples at the end of the 14th day, which was lower than the untreated fruits. The results suggested that postharvest application of SA2%+AA1% has the potential to extend the storage life of strawberry fruits by reducing water loss and maintaining fruit quality.
Fereshteh Kamiab; Sadegh Shahmoradzadeh Fahreji; Elahe Zamani Bahramabadi
Abstract
Increasing quality and vase life of cut flowers play vital role in flower production industry. . Lisianthus (Eustoma grandiflora cv. Echo) has short vase life and it has been revealed that ethylene directly affect the initiation and process of senescence of petals. In this study, the effects of ...
Read More
Increasing quality and vase life of cut flowers play vital role in flower production industry. . Lisianthus (Eustoma grandiflora cv. Echo) has short vase life and it has been revealed that ethylene directly affect the initiation and process of senescence of petals. In this study, the effects of Silver and silicon nanoparticles with four concentrations of 0, 10, 20 and 40 mg L-1 with 4% sucrose as a support solution were evaluated on post-harvest life of ‘Cinderella Lime’ Lisianthus. The morphological and physiological parameters such as microbial population, flower vase life, relative fresh weight, solution uptake, total chlorophyll, ethylene and total dissolved solids were measured. Results revealed that all treatments extended the flower vase life when compared to control. The most effective treatment was the Highest concentration of nanoparticles (40 mg L-1). The average vase life of flowers was about 5 days in control (without any nano particle treatments) however; it reached to 17 days in flowers treated by 40 mg L-1 of both nanoparticles. Relative fresh weight, solution uptake, total chlorophyll, and total dissolved solids were also increased in the treated flowers, especially at higher concentrations. Microbial proliferations were not observed by application of both nanoparticles (Silver or Silicon) at 40 mg L-1 therefore this concentration was considered as the most effective level for both nanoparticles. Nano silver were more effective than silicon for reducing ethylene content. Overall the results suggest that silicon nanoparticle (40 mg L-1) is applicable as antimicrobial compound in combination with silver nanoparticles (40 mg L-1) as ethylene signaling inhibitor to increase the vase life of Lisianthus flowers commercially.